【題目】某醫(yī)療研究所開發(fā)一種新藥如果成人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y與時間t之間近似滿足如圖所示的曲線.

(1)寫出服藥后yt之間的函數(shù)關(guān)系式;

(2)據(jù)測定每毫升血液中含藥量不少于4 μg時治療疾病有效,假若某病人一天中第一次服藥為上午700,問:一天中怎樣安排服藥時間(4)效果最佳?

【答案】(1)y;(2)第二次服藥應(yīng)在1100第三次服藥應(yīng)在1600;第四次服藥應(yīng)在2030.

【解析】試題分析(1)根據(jù)圖象寫出分段函數(shù)圖象;(2)由題意可知,第二次服藥滿足t1=4,第三次服藥,則此時血液中含藥量應(yīng)為前兩次服藥后的含藥量的和,即有-t2 (t2-4)+=4,第四次服藥,則此時第一次服進的藥已吸收完,血液中含藥量應(yīng)為第二、第三次的和,即有- (t3-4)+ (t3-9)+=4,解得答案。

試題解析:

(1)依題意得y

(2)設(shè)第二次服藥時在第一次服藥后t1小時,則-t1=4,解得t1=4,因而第二次服藥應(yīng)在11:00.

設(shè)第三次服藥在第一次服藥后t2小時,則此時血液中含藥量應(yīng)為前兩次服藥后的含藥量的和,即有-t2 (t2-4)+=4,解得t2=9,故第三次服藥應(yīng)在16:00.

設(shè)第四次服藥在第一次服藥后t3小時(t3>10),則此時第一次服進的藥已吸收完,血液中含藥量應(yīng)為第二、第三次的和,即有- (t3-4)+ (t3-9)+=4,解得t3=13.5,故第四次服藥應(yīng)在20:30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , 上一點, 平面

(Ⅰ)證明: 平面;

(Ⅱ)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D

的中點,AC⊥平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求三棱錐C-DB1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考江蘇卷】已知函數(shù).設(shè).

(1)求方程的根;

(2)若對任意,不等式恒成立,求實數(shù)的最大值;

(3)若,函數(shù)有且只有1個零點,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦安全法規(guī)知識競賽,從參賽的高一、高二學(xué)生中各抽出100人的成績作為樣本,對高一年級的100名學(xué)生的成績進行統(tǒng)計,并按, , , , 分組,得到成績分布的頻率分布直方圖(如圖)。

(1)若規(guī)定60分以上(包括60分)為合格,計算高一年級這次競賽的合格率;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此,估計高一年級這次知識競賽的學(xué)生的平均成績;

(3)若高二年級這次競賽的合格率為,由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并問是否有的把握認(rèn)為“這次知識競賽的成績與年級有關(guān)”。

高一

高二

合計

合格人數(shù)

不合格人數(shù)

合計

附:參考數(shù)據(jù)與公式

高一

高二

合計

合格人數(shù)

a

b

a+b

不合格人數(shù)

c

d

c+d

合計

a+c

b+d

n

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若有窮數(shù)列是正整數(shù)),滿足是正整數(shù),且),就稱該數(shù)列為“對稱數(shù)列”。例如,數(shù)列與數(shù)列都是“對稱數(shù)列”.

(1)已知數(shù)列是項數(shù)為9的對稱數(shù)列,且,,,,成等差數(shù)列, , ,試求, , , ,并求前9項和.

(2)若是項數(shù)為的對稱數(shù)列,且構(gòu)成首項為31,公差為的等差數(shù)列,數(shù)列項和為,則當(dāng)為何值時, 取到最大值?最大值為多少?

(3)設(shè)項的“對稱數(shù)列”,其中是首項為1,公比為2的等比數(shù)列.求項的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,點的極坐標(biāo)為,為圓心,4為半徑;又直線的極坐標(biāo)方程為。

(Ⅰ)求直線和圓的普通方程;

試判定直線和圓的位置關(guān)系.若相交,則求直線被圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在的展開式中,第5項的系數(shù)與第3項的系數(shù)之比是563

1)求展開式中的所有有理項;

2)求展開式中系數(shù)絕對值最大的項.

3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列5個命題中正確命題的個數(shù)是( )

①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;

②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;

③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;

④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為;

⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.

A.2 B.3

C.4 D.5

查看答案和解析>>

同步練習(xí)冊答案