精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,為了測量河對岸的塔高AB,可以選與塔底B在同一水平面內的兩個測量點C與D.現測得∠BCD=53°,∠BDC=60°,CD=60(米),并在點C測得塔頂A的仰角為∠ACB=29°,求塔高AB(精確到0.1米).
分析:結合圖形,在△BCD中,求出∠CBD,利用正弦定理求出BC,在Rt△ABC中,利用三角函數的定義,求出AB即可.
解答:精英家教網解:在△BCD中,∠CBD=180°-(53°+60°)=67°,
由正弦定理得
BC
sin∠BDC
=
CD
sin∠CBD
,
所以BC=
CD•sin∠BDC
sin∠CBD
=
60•sin60°
sin67°

在Rt△ABC中,AB=BC•tan∠ACB=
60•sin60°
sin67°
×tan29°≈31.3

所以,塔高AB為31.3米.
點評:本題是基礎題,考查三角形中的計算問題,正弦定理的應用,?碱}型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,為了測量河對岸A、B兩點之間的距離,在岸邊選定了1km長的基線CD,并測得∠ACD=90°,∠BCD=60°,∠BDC=75°,∠ADC=30°.試計算A、B之間的距離.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,為了測量河對岸A,B兩點間的距離,在河的這邊測得CD=
3
2
 km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,A、B兩點間的距離為
6
4
km
6
4
km

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,為了測量河對岸A,B兩點間的距離,某課外小組的同學在岸邊選取C,D兩點,測得CD=200m,∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,則A,B兩點間的距離是(  )

查看答案和解析>>

科目:高中數學 來源:2011-2012學年河北省唐山市高三第三次模擬考試文科數學試卷(解析版) 題型:解答題

如圖,為了測量河對岸A、B兩點之間的距離,觀察者找到一個點C,從C點可以觀察到點A、B;找到一個點D,從D點可以觀察到點A、C:找到一個點E,從E點可以觀察到點B、C。并測得以下數據:CD=CE=100m,∠ACD=90°,∠ACB=45°,∠BCE=75°,∠CDA=∠CEB=60°,求A、B兩 點之間的距離。

 

查看答案和解析>>

同步練習冊答案