7.已知圓C:(x-3)2+(y+1)2=4,過(guò)P(1,5)的直線l與圓C相切,則直線l的方程為x=1或4x+3y-19=0.

分析 設(shè)出切線方程,求出圓的圓心與半徑,利用圓心到直線的距離等于半徑,求出k,寫(xiě)出切線方程即可.

解答 解:設(shè)切線方程為y-5=k(x-1),即kx-y-k+5=0,
∵圓心(3,-1)到切線l的距離等于半徑2,
∴$\frac{|2k+6|}{\sqrt{{k}^{2}+1}}$=2,解得k=-$\frac{4}{3}$,
∴切線方程為4x+3y-19=0,
當(dāng)過(guò)點(diǎn)M的直線的斜率不存在時(shí),其方程為x=1,圓心(3,-1)到此直線的距離等于半徑2,
故直線x=1也適合題意.
所以,所求的直線l的方程是x=1或4x+3y-19=0.
故答案為x=1或4x+3y-19=0.

點(diǎn)評(píng) 本題考查圓的切線方程的求法,注意直線的斜率存在與不存在情況,是本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.等比數(shù)列{an}中,a3=2,a5=6,則a9=54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)f(x)=lg(5-x).
(1)若10f(k)=10f(2)×10f(3),求k的值;
(2)若f(2m-1)<f(m+1),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知直線l:y=k(x-2)與拋物線C:y2=8x交于A,B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若|AF|=3|BF|,則直線l的傾斜角為$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.中國(guó)清朝數(shù)學(xué)家李善蘭在1859年翻譯《代數(shù)學(xué)》中首次將“function”譯做:“函數(shù)”,沿用至今,為什么這么翻譯,書(shū)中解釋說(shuō)“凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”.1930年美國(guó)人給出了我們課本中所學(xué)的集合論的函數(shù)定義,已知集合M={-1,1,2,4},N={1,2,4,16},給出下列四個(gè)對(duì)應(yīng)法則:①y=log2|x|,②y=x+1,③y=2|x|,④y=x2,請(qǐng)由函數(shù)定義判斷,其中能構(gòu)成從M到N的函數(shù)的是( 。
A.①③B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x||x-1|<1},B={x|1-$\frac{1}{x}$≥0},則A∩B=( 。
A.{x|1≤x<2}B.{x|0<x<2}C.{x|0<x≤1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,ABCD是邊長(zhǎng)為a的菱形,∠BAD=60°,EB⊥平面ABCD,F(xiàn)D⊥平面ABCD,EB=2FD=$\sqrt{3}$a
(Ⅰ)求證:EF丄AC;
(Ⅱ)求直線CE與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.不等式(x2-4)(x-6)2≤0的解集是{x|-2≤x≤2或者x=6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=m(x-2m)(x+m+3),$g(x)={2^x}-\frac{1}{2}$,若對(duì)任意的x∈R,都有f(x)<0或g(x)<0,則實(shí)數(shù)m的取值范圍是(-2,-$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案