17.已知函數(shù)f(x)=$\frac{1}{{{x^2}-1}}$.
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明.

分析 (1)令分母不等于0解出x的范圍;
(2)在(1,+∞)上任取兩個(gè)數(shù)x1<x2,化簡(jiǎn)f(x1)-f(x2),判斷其符號(hào),得出結(jié)論.

解答 解:(1)函數(shù)的定義域?yàn)閧x|x≠±1}.
(2)在(1,+∞)上任取兩個(gè)數(shù)x1<x2
∴f(x1)-f(x2)=$\frac{1}{{{x}_{1}}^{2}-1}-\frac{1}{{{x}_{2}}^{2}-1}$=$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)}$=$\frac{({x}_{2}+{x}_{1})({x}_{2}-{x}_{1})}{({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)}$,
∵1<x1<x2∴x2-x1>0,$({x_1}^2-1)({x_2}^2-1)>0$,
∴$\frac{({x}_{2}+{x}_{1})({x}_{2}-{x}_{1})}{({{x}_{1}}^{2}-1)({{x}_{2}}^{2}-1)}$>0,
即f(x1)-f(x2)>0
∴f(x1)>f(x2
∴函數(shù)$f(x)=\frac{1}{{{x^2}-1}}$在(1,+∞)上是減函數(shù).

點(diǎn)評(píng) 本題考查了利用定義判斷函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)要將中國(guó)南方的新鮮荔枝運(yùn)到北方甲、乙兩地銷售,運(yùn)輸時(shí)間單位以天計(jì)算.從運(yùn)輸出發(fā)到目的地所用時(shí)間為n天,則新鮮荔枝的品質(zhì)為n級(jí).據(jù)統(tǒng)計(jì),每噸n級(jí)新鮮荔枝的利潤(rùn)是:運(yùn)到甲地200-60n;運(yùn)到乙地為300-70n.根據(jù)歷史資料,近期各有10批次運(yùn)往甲、乙兩地的運(yùn)輸時(shí)間及頻數(shù)統(tǒng)計(jì)如表:
目的地/頻數(shù)/運(yùn)輸時(shí)間12345
甲地2431
乙地1342
以下計(jì)算都將頻率視為概率,若選擇運(yùn)往甲地或乙地的概率相同(利潤(rùn)單位為:元)
(1)問運(yùn)往甲地或乙地的新鮮荔枝每噸利潤(rùn)不低于80元的概率;
(2)設(shè)運(yùn)到乙地的新鮮荔枝每噸利潤(rùn)為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望Eξ;
(3)在同一批次中,把噸位數(shù)相同的新鮮荔枝運(yùn)到甲地和運(yùn)到乙地所獲利潤(rùn)分別為X、Y,求事件“X>Y”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)P1的球坐標(biāo)是(2$\sqrt{2}$,$\frac{2π}{3}$,$\frac{π}{4}$),點(diǎn)P2的柱坐標(biāo)是(2$\sqrt{3}$,$\frac{π}{6}$,-$\sqrt{2}$),則|P1P2|=3-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某種產(chǎn)品的廣告支出x與銷售額y(單位:萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
根據(jù)上表可得回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的$\widehat$為6.5.若要使銷售額不低于100萬元,則至少需要投入廣告費(fèi)為(x為整數(shù))( 。
A.10萬元B.11萬元C.12萬元D.13萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.2log6$\sqrt{2}$+3log6$\root{3}{3}$=(  )
A.1B.0C.6D.log6$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=log2(x2-2ax+1+a)在(-∞,1]上遞減,則實(shí)數(shù)a的取值范圍是( 。
A.[1,2)B.(1,2)C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列四個(gè)結(jié)論:
①若n組數(shù)據(jù)(x1,y1)…(xn,yn)的散點(diǎn)都在y=-2x+1上,則相關(guān)系數(shù)r=-1;
②由直線x=$\frac{1}{2}$,x=2,曲線y=$\frac{1}{x}$及x軸圍成的圖形的面積是2ln2;
③已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;
④設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加一個(gè)單位時(shí),$\widehat{y}$平均增加2個(gè)單位.
其中錯(cuò)誤結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={1,2},N={1,2,3},則滿足A∪X=N的集合X的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.學(xué)習(xí)雷鋒精神的前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時(shí)全修好,單位對(duì)學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況做了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù)未損壞餐椅數(shù)總 計(jì)
學(xué)習(xí)雷鋒精神前50150200
學(xué)習(xí)雷鋒精神后30170200
總  計(jì)80320400
(1)求學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)校雷鋒精神是否有關(guān)?
(2)請(qǐng)說明是否有97.5%的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案