【題目】已知函數(shù).
(1)當(dāng)時,求的極值;
(2)當(dāng)函數(shù)有兩個極值點,,總有成立,求整數(shù)t的最大值.
【答案】(1)極大值為-7,的極小值為. (2)最大值為.
【解析】
(1)通過求出的導(dǎo)數(shù),求出的單調(diào)區(qū)間,進而可得極值;
(2)對求導(dǎo),函數(shù)有兩個極值點,可得在上有兩個不等的正實根,由韋達定理可得,再將代入可得恒成立,,求導(dǎo),求出 的最小值即可.
解:(1),
故在上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增,
從而的極大值為,的極小值為;
(2)函數(shù)的定義域為,,
有兩個極值點,,
則在上有兩個不等的正實根,
由,可得,
由題,有,即恒成立,
令,,
設(shè),因為,
所以在上單調(diào)遞增且當(dāng)時,,又,
故存在,使得,即,,
所以在上單調(diào)遞減,上單調(diào)遞增,
故,
故,,
所以t的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求證:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市新上一種瓶裝洗發(fā)液,為了打響知名度,舉行為期六天的低價促銷活動,隨著活動的有效開展,第六天該超市對前五天中銷售的洗發(fā)液進行統(tǒng)計,y表示第x天銷售洗發(fā)液的瓶數(shù),得到統(tǒng)計表格如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 4 | 6 | 10 | 15 | 20 |
(1)若y與x具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并預(yù)測第六天銷售該洗發(fā)液的瓶數(shù)(按四舍五入取到整數(shù));
(2)超市打算第六天加大活動力度,購買洗發(fā)液可參加抽獎,中獎?wù)呖深I(lǐng)取獎金20元,中獎概率為,已知甲、乙兩名顧客抽獎中獎與否相互獨立,求甲、乙所獲得獎金之和X的分布列及數(shù)學(xué)期望.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.
(1)求橢圓E的標(biāo)準(zhǔn)方程,
(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖,在直角坐標(biāo)系中,角的頂點是原點,始邊與軸正半軸重合.終邊交單位圓于點,且,將角的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點,記.
(1)若,求;
(2)分別過作軸的垂線,垂足依次為,記的面積為,的面積為,若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點到距離的最大值及該點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)為的“漸近函數(shù)”;
(1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;
(2)若函數(shù),證明:當(dāng)時,不是的漸近函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“生產(chǎn)發(fā)展、生活富裕、鄉(xiāng)風(fēng)文明、村容整潔、管理民主”的社會主義新農(nóng)村建設(shè),某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農(nóng)養(yǎng)蜂、產(chǎn)蜜與售蜜.已知扇形AOB中,,(百米),荒地內(nèi)規(guī)劃修建兩條直路AB,OC,其中點C在上(C與A,B不重合),在小路AB與OC的交點D處設(shè)立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).設(shè),蜂巢區(qū)的面積為S(平方百米).
(1)求S關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系xOy的原點為極坐標(biāo)系的極點,x軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,P是上一動點,,Q的軌跡為.
(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程,
(2)若點,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線的交點為A,B,當(dāng)取最小值時,求直線l的普通方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com