8.如果方程Ax+By+C=0表示的直線是x軸,則A、B、C滿足( 。
A.A•C=0B.B≠0C.B≠0且A=C=0D.A•C=0且B≠0

分析 直線表示x軸,直線方程表示為y=0,推出系數(shù)A、B、C滿足的條件即可.

解答 解:Ax+By+C=0表示的直線是x軸,直線化為y=0,則系數(shù)A、B、C滿足的條件是B≠0且A=C=0,
故選:C

點評 本題考查直線方程的應用,直線的位置關系與系數(shù)的關系,基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,且離心率是$\frac{1}{2}$,過坐標原點O的任一直線交橢圓C于M、N兩點,且|NF2|+|MF2|=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點A、B,且與圓x2+y2=1相切,
(i)求證:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知直線2x+y-2=0經(jīng)過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點與右焦點,則橢圓的方程為(  )
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.橢圓$\frac{x^2}{m}+{y^2}=1$的離心率$e∈(\frac{1}{2},1)$,則m的取值范圍是$m>\frac{4}{3}$或$0<m<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)f(x)=2x2-lnx的遞增區(qū)間是( 。
A.$(0,\frac{1}{2})$B.$(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$C.$(\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域為R,且為可導函數(shù),若對?x∈R,總有(2-x)f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導函數(shù)),則( 。
A.f(x)>0恒成立B.f(x)<0恒成立
C.f(x)的最大值為0D.f(x)與0的大小關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.自主招生,是高校選拔錄取工作改革的重要環(huán)節(jié),通過高考自主招生筆試和面試之后,可以得到相應的高考降分政策;某高中高一學生共有1000人,其中城填初中畢業(yè)生750名(稱為“城填生“),農村初中畢業(yè)生250人(稱為“農村生“);為了摸清學生是否愿意參加自主招生,以便安排自主招生培訓,擬采用分層抽樣的方法抽取100名學生進行調查;
(1)試完成下列2×2聯(lián)表,并分析是否有95%以上的把握說“是否愿意參加自主招生“與生源有關.
愿意參加不愿意參加合計
城填生502575
農村生101525
合計6040100
(2)現(xiàn)對愿意參加自主招生的同學組織摸底考試,考試題共有5道題,每題20分,對于這5道題,考生“高富帥”完全會答的有3道,不完全會的有2道,不完全會的每道題她得分S的概率滿足:SKIPIF 1<0,假設解答各題之間沒有影響.
①對于一道不完全會的題,求“高富帥”得分的均值E(s);
②試求“高富帥”在本次摸底考試中總得分的數(shù)學期望.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,為測量塔高AB,選取與塔底B在同一水平面內的兩點C、D,在C、D兩點處測得塔頂A的仰角分別為45°,30°,又測得∠CBD=30°,CD=50米,則塔高AB=( 。
A.50米B.25$\sqrt{3}$米C.25米D.50$\sqrt{3}$米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)$f(x)=\frac{sinx}{x}$的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案