【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),.

1)求f(x)的解析式;

2)設(shè)x[1,2]時(shí),函數(shù),是否存在實(shí)數(shù)m使得g(x)的最小值為6,若存在,求m的取值;若不存在,說明理由.

【答案】12.

【解析】

1)設(shè),根據(jù)計(jì)算,利用奇偶性即可求解函數(shù)解析式;

2)通過換元,問題轉(zhuǎn)化為二次函數(shù)h (t)[2, 4]上的最小值為6,再通過分類討論得出結(jié)論.

1)設(shè),,

當(dāng)x>0時(shí),可知,,

fx)為R上的奇函數(shù),

于是,

故當(dāng)時(shí),,

當(dāng)時(shí),由知,

綜上知

2)由(1)知,x[1,2]時(shí),

,

,

函數(shù)g(x)的最小值為6,即上的最小值為6

當(dāng),即m>﹣5時(shí),函數(shù)ht)在[2,4]上為增函數(shù),

于是htminh2)=6,此時(shí)存在滿足條件的實(shí)數(shù)m>﹣5;

當(dāng),即﹣9m≤﹣5時(shí),,解得,此時(shí)滿足條件;

當(dāng),即m<﹣9時(shí),函數(shù)ht)在[24]上為減函數(shù),

于是htminh4)=2m+206,解得,此時(shí)不存在滿足條件的實(shí)數(shù)m;

綜上,存在使得函數(shù)gx)的最小值為6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了緩解市民吃肉難的生活問題,某生豬養(yǎng)殖公司欲將一批豬肉用冷藏汽車從甲地運(yùn)往相距千米的乙地,運(yùn)費(fèi)為每小時(shí)元,裝卸費(fèi)為元,豬肉在運(yùn)輸途中的損耗費(fèi)(單位:元)是汽車速度值的.(說明:運(yùn)輸?shù)目傎M(fèi)用=運(yùn)費(fèi)+裝卸費(fèi)+損耗費(fèi))

1)若汽車的速度為每小時(shí)千米,試求運(yùn)輸?shù)目傎M(fèi)用;

2)為使運(yùn)輸?shù)目傎M(fèi)用不超過元,求汽車行駛速度的范圍;

3)若要使運(yùn)輸?shù)目傎M(fèi)用最小,汽車應(yīng)以每小時(shí)多少千米的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為豐富市民的文化生活,市政府計(jì)劃在一塊半徑為100m的扇形土地OAB上建造市民廣場.規(guī)劃設(shè)計(jì)如圖:矩形EFGH(其中E,F(xiàn)在圓弧AB上,G,H在弦AB上)區(qū)域?yàn)檫\(yùn)動(dòng)休閑區(qū),△OAB區(qū)域?yàn)槲幕故緟^(qū),其余空地為綠化區(qū)域,已知P為圓弧AB中點(diǎn),OPABM,cos∠POB=,記矩形EFGH區(qū)域的面積為Sm2

(1)設(shè)∠POF=θ(rad),將S表示成θ的函數(shù);

(2)求矩形EFGH區(qū)域的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mx2+(1-3m)x-4,m∈R.

(1)當(dāng)m=1時(shí),求f(x)在區(qū)間[-2,2]上的最大值和最小值.

(2)解關(guān)于x的不等式f(x)>-1.

(3)當(dāng)m<0時(shí),若存在x0∈(1,+∞),使得f(x)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工一批零件,加工過程中會(huì)產(chǎn)生次品,根據(jù)經(jīng)驗(yàn)可知,其次品率與日產(chǎn)量(萬件)之間滿足函數(shù)關(guān)系式,已知每生產(chǎn)1萬件合格品可獲利2萬元,但生產(chǎn)1萬件次品將虧損1萬元.(次品率=次品數(shù)/生產(chǎn)量).

(1)試寫出加工這批零件的日盈利額(萬元)與日產(chǎn)量(萬件)的函數(shù);

(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)函數(shù)與直線相切,設(shè)函數(shù)其中a、cR,e是自然對(duì)數(shù)的底數(shù).

1)討論h(x)的單調(diào)性;

2h(x)在區(qū)間內(nèi)有兩個(gè)極值點(diǎn).

①求a的取值范圍;

②設(shè)函數(shù)h(x)的極大值和極小值的差為M,求實(shí)數(shù)M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C為銳角三角形ABC的三個(gè)內(nèi)角,若向量=(2-2sinA,cosA+sinA)與向量=(1+sinA,cosA-sinA)互相垂直.

(Ⅰ)求角A;

(Ⅱ)求函數(shù)y=2sin2B+cos的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響力的綜合指標(biāo),根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2018年某全國性大型活動(dòng)的省級(jí)衛(wèi)視新聞臺(tái)融合指數(shù)的數(shù)據(jù),對(duì)名列前20名的省級(jí)衛(wèi)視新聞臺(tái)的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.

組號(hào)

分組

頻數(shù)

1

2

2

8

3

7

4

3

現(xiàn)從融合指數(shù)在內(nèi)的省級(jí)衛(wèi)視新聞臺(tái)中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)對(duì)任意實(shí)數(shù)都滿足,且當(dāng)時(shí),

1)判斷函數(shù)的奇偶性,并證明;

2)判斷函數(shù)的單調(diào)性,并證明;

3)解不等式

查看答案和解析>>

同步練習(xí)冊答案