如圖所示,四邊形ABCD和四邊形AB′C′D分別是矩形和平行四邊形,其中各點(diǎn)的坐標(biāo)分別為A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求將四邊形ABCD變成四邊形AB′C′D的變換矩陣M.

 

 

【解析】該變換為切變變換.設(shè)矩陣M=,由圖知,CC′,則.所以3k-2=3,解得k=.所以,M=.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知點(diǎn)P(x,y)是圓x2+y2=2y上的動(dòng)點(diǎn).

(1)求2x+y的取值范圍;

(2)若x+y+a≥0恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第1課時(shí)練習(xí)卷(解析版) 題型:解答題

若兩條曲線(xiàn)的極坐標(biāo)方程分別為ρ=1與ρ=2cos,它們相交于A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第2課時(shí)練習(xí)卷(解析版) 題型:解答題

矩陣M=有特征向量為e1=,e2=,

(1)求e1和e2對(duì)應(yīng)的特征值;

(2)對(duì)向量α=,記作α=e1+3e2,利用這一表達(dá)式間接計(jì)算M4α,M10α.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知矩陣M=,若矩陣M的逆矩陣M-1=,求a、b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第1課時(shí)練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系中,已知△ABC的頂點(diǎn)坐標(biāo)為A,B,C.求△ABC在矩陣作用下變換所得到的圖形的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第1課時(shí)練習(xí)卷(解析版) 題型:解答題

求直線(xiàn)x+y=5在矩陣對(duì)應(yīng)的變換作用下得到的圖形.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-1第2課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F.

(1)判斷BE是否平分∠ABC,并說(shuō)明理由;

(2)若AE=6,BE=8,求EF的長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,∠AOB=60°,OA=2,OB=5,在線(xiàn)段OB上任取一點(diǎn)C,試求:

(1)△AOC為鈍角三角形的概率;

(2)△AOC為銳角三角形的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案