設(shè)非零向量
a
b
的夾角是
6
,且|
a
|=|
a
+
b
|,則
|2
a
+t
b
|
|
b
|
的最小值是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由已知利用模的等式兩邊平方得到|
b
|=
3
|
a
|,將所求平方利用此關(guān)系得到關(guān)于t的二次函數(shù)解析式,然后求最小值.
解答: 解:因?yàn)榉橇阆蛄?span id="rd59znd" class="MathJye">
a
b
的夾角是
6
,且|
a
|=|
a
+
b
|,
所以|
a
|2=|
a
+
b
|2=|
a
|2+2
a
b
+|
b
|2,所以|
b
|=
3
|
a
|,
則(
|2
a
+t
b
|
|
b
|
2=
4|
a
|2+t2|
b
|2+4t
a
b
b
2
=t2+2t+
4
3
=(t+1)2+
1
3
,
所以當(dāng)t=-1時,
|2
a
+t
b
|
|
b
|
的最小值是
1
3
=
3
3
;
故答案為:
3
3
點(diǎn)評:本題考查了向量的數(shù)量積以及向量的平方與模的平方相等的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)一名數(shù)學(xué)老師對全班50名學(xué)生某次考試成績分男女生進(jìn)行了統(tǒng)計(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如下的兩個頻率分布直方圖:

(1)根據(jù)以上兩個直方圖完成下面的2×2列聯(lián)表:
成績性別優(yōu)秀不優(yōu)秀總計
男生
女生
總計
(2)根據(jù)(1)中表格的數(shù)據(jù)計算,你有多大把握認(rèn)為學(xué)生的數(shù)學(xué)成績與性別之間有關(guān)系?(注:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
(3)若從成績在[130,140]的學(xué)生中任取2人,求取到的2人中至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公比為正整數(shù)的等比數(shù)列,若a2=2且a1,a3+
1
2
,a4成等差數(shù)列,定義:
n
P1+P2+…+Pn
為n個正數(shù)P1,P2,…,Pn(n∈N*)的“均倒數(shù)”
(1)若數(shù)列{bn}前n項(xiàng)的“均倒數(shù)“為
1
2an-1
(n∈N*)
,求數(shù)列{bn}的通項(xiàng)bn    
(2)試比較
1
b1
+
1
b2
+…+
1
bn
與2的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
 
(填上你認(rèn)為正確選項(xiàng)的序號)
①函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
②函數(shù)y=-2sin(2x+
π
3
)在區(qū)間(0,
π
12
)上是增函數(shù);
③函數(shù)y=cos2x-sin2x的最小正周期為π;
④函數(shù)y=2tan(
x
2
+
π
4
)的一個對稱中心是(
π
2
,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
,
b
的夾角為60°,且|
a
|=|
a
-
b
|=2,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B(-1,0),C(1,0).G,I分別是△ABC的重心和內(nèi)心,
IG
BC

(1)求原點(diǎn)A的軌跡M的方程;
(2)過點(diǎn)C的直線交曲線M于P、Q兩點(diǎn),H是直線x=4上一點(diǎn),設(shè)直線CH,PH,QH的效率分別為k1,k2,k2,求證:2k1=k2+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-ax2-ax,g(x)=2x2+4x+c
(1)試判斷f(x)的零點(diǎn)個數(shù);
(2)若a=-1,當(dāng)x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x,x>0
0,x=0
x2+mx
是奇函數(shù),M={y|y=f(x),x<0},N={x|ax-a+2>0},M⊆N
(1)若實(shí)數(shù)m的值及a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[-1,t-2]上單調(diào)遞增,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,2,3),
b
=(-1,y,z),且
a
b
,則y=
 
,z=
 

查看答案和解析>>

同步練習(xí)冊答案