4.已知圓C的方程是x2+y2-4x=0,直線l:ax-y-4a+2=0(a∈R)與圓C相交于M、N兩點(diǎn),設(shè)P(4,2),則|PM|+|PN|的取值范圍是(4,4$\sqrt{2}$].

分析 把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=4+tcosα}\\{y=2+tsinα}\end{array}\right.$代入x2+y2-4x=0,可得t2+4(sinα+cosα)t+4=0,利用△>0,可得sinαcosα>0,α∈(0,$\frac{π}{2}$),利用根與系數(shù)的好像可得|PM|+|PN|=|t1|+|t2|=|t1+t2|=4$\sqrt{2}$sin(α+$\frac{π}{4}$),即可得出.

解答 解:把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=4+tcosα}\\{y=2+tsinα}\end{array}\right.$,
代入x2+y2-4x=0,可得t2+4(sinα+cosα)t+4=0,
由△=16(sinα+cosα)2-16>0,sinαcosα>0,
又α∈[0,π),∴α∈(0,$\frac{π}{2}$),
∴t1+t2=-4(sinα+cosα),t1t2=4.
∴t1<0,t2<0.
∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4(sinα+cosα)=4$\sqrt{2}$sin(α+$\frac{π}{4}$),
由α∈(0,$\frac{π}{2}$),可得α+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$),∴$\frac{\sqrt{2}}{2}$<sin(α+$\frac{π}{4}$)≤1,
∴|PM|+|PN|的取值范圍是(4,4$\sqrt{2}$].
故答案為(4,4$\sqrt{2}$].

點(diǎn)評(píng) 本題考查了直線參數(shù)方程的運(yùn)用、兩角和差的正弦公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A=[0,3),B=[a,a+2).
(1)若a=-1,求A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上任意一點(diǎn),若|PF1|=4,則|PF2|=( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知兩條直線l1:2x+y-2=0與l2:2x-my+4=0
(1)若直線l1⊥l2,求直線l1與l2交點(diǎn)P的坐標(biāo);
(2)若直線l1∥l2,求實(shí)數(shù)m的值以及兩直線間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的離心率為$\frac{{\sqrt{6}}}{2}$,則它的漸近線方程為( 。
A.y=±2xB.y=±$\frac{1}{4}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{\sqrt{2}}}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)$f(x)=\frac{ax}{x+a}({a>0})$,令a1=1,an+1=f(an),又${b_n}={a_n}•{a_{n+1}},n∈{N^*}$.
(1)證明:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn),PA=AD=1,AB=2.
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD;
(3)求點(diǎn)D到平面PMC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若隨機(jī)變量X~B(4,$\frac{1}{2}$),則D(2X+1)=( 。
A.2B.4C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{e(x-1)}{{e}^{x}}$,若存在兩對(duì)關(guān)于y軸對(duì)稱的點(diǎn)分別再直線y=k(x+1)(k≠0)和函數(shù)y=f(x)的圖象上,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,-1)∪(-1,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案