已知橢圓Cy2=1,過點(diǎn)(m,0)作圓x2y2=1的切線l交橢圓GA、B兩點(diǎn).

(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;

(2)將|AB|表示為m的函數(shù),并求|AB|的最大值

 

 

【答案】

解:(Ⅰ)由已知得所以

所以橢圓C的焦點(diǎn)坐標(biāo)為,離心率為

(Ⅱ)由題意知,.當(dāng)時(shí),切線l的方程,

點(diǎn)A、B的坐標(biāo)分別為此時(shí)

當(dāng)m=-1時(shí),同理可得

當(dāng)時(shí),設(shè)切線l的方程為

;

設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,則;

又由l與圓

由于當(dāng)時(shí),

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052503005768754075/SYS201205250302327812869130_DA.files/image021.png">且當(dāng)時(shí),|AB|=2,

所以|AB|的最大值為2.

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、文科數(shù)學(xué)(湖北卷) 題型:022

已知橢圓C:+y2=1的兩焦點(diǎn)為F1,F2,點(diǎn)P(x0,y0)滿足0<<1,則|PF1|+|PF2|的取值范圍為________,直線+y0y=1與橢圓C的公共點(diǎn)個(gè)數(shù)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省鐵嶺高級(jí)中學(xué)2012屆高三上學(xué)期第三次月考數(shù)學(xué)理科試題 題型:044

如圖,已知橢圓C:+y2=1(a>1)的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若不過點(diǎn)A的動(dòng)直線l與橢圓C相交于P、Q兩點(diǎn),且求證:直線l過定點(diǎn),并求出該定點(diǎn)N的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Cy2=1,過點(diǎn)(m,0)作圓x2y2=1的切線l交橢圓GA、B兩點(diǎn).
(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(2)將|AB|表示為m的函數(shù),并求|AB|的最大值.






查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Cy2=1(a>1)的上頂點(diǎn)為A,左、右焦點(diǎn)F1F2,直線AF2與圓Mx2y2-6x-2y+7=0相切.

(1)求橢圓C的方程;

(2)若橢圓內(nèi)存在動(dòng)點(diǎn)P,使|PF1|,|PO|,|PF2|成等比數(shù)列(O為坐標(biāo)原點(diǎn)).求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案