8.若數(shù)列{an}的前n項(xiàng)和為Sn=n2-10n(n∈N*),求此數(shù)列的通項(xiàng)公式.

分析 由數(shù)列的前n項(xiàng)和求得首項(xiàng),再由an=Sn-Sn-1(n≥2)求得通項(xiàng),驗(yàn)證首項(xiàng)后得答案.

解答 解:由Sn=n2-10n(n∈N*),
得a1=-9;
當(dāng)n≥2時(shí),${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-10n-(n-1)^{2}+10(n-1)$2n-11.
驗(yàn)證a1=-9滿足上式,
∴an=2n-11.

點(diǎn)評(píng) 本題考查數(shù)列的求和,考查了利用數(shù)列前n項(xiàng)和求數(shù)列的通項(xiàng)公式,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖四邊形ABCD為正方形,BG,DE,AF兩兩平行且BG=DE=$\frac{1}{2}$AF=$\frac{1}{2}$AB,又AF垂直底面ABCD.
 (1)求證:CG∥平面ADEF;
(2)記正方形ABCD的中心為O,AD,CD的中點(diǎn)分別為P,Q,求證:GO⊥平面EPQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若方程$\frac{{x}^{2}}{1-k}$+$\frac{{y}^{2}}{2+k}$=1表示橢圓,則k的取值范圍為$(-2,-\frac{1}{2})$∪$(-\frac{1}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)$\overrightarrow{a}$為單位向量,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,兩組向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2個(gè)$\overrightarrow{a}$和2個(gè)$\overrightarrow$排列而成,設(shè)S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,則把所有的可能結(jié)果輸入如圖框圖,則輸出的結(jié)果為( 。
A.A=10,B=4B.A=4,B=10C.A=7,B=4D.A=10,B=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ln(x+3)+ax+2(a∈R)在點(diǎn)x=-2處取得極值.
(1)求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=f(x)+kx(k∈R)在區(qū)間(-3,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,a=2,b=1,sinA=$\frac{1}{3}$,則sinB=( 。
A.6B.$\frac{1}{6}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)分別比較log23和log34,log34和log45的大小,歸納出一個(gè)一般性的結(jié)論,并證明你的結(jié)論;
(2)已知a,b,x,y∈R,證明:(a2+b2)(x2+y2)≥(ax+by)2,并利用上述結(jié)論求(sin2x+cos2x)($\frac{1}{{{{sin}^2}x}}$+$\frac{4}{{{{cos}^2}x}}$)的最小值(其中x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知角α的終邊經(jīng)過點(diǎn)(-1,$\sqrt{3}$),則對(duì)函數(shù)f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正確的是( 。
A.f(x)在區(qū)間$(-\frac{π}{3},\frac{π}{6})$上遞增
B.方程f(x)=0在[-$\frac{5}{6}π,0}$]上有三個(gè)零點(diǎn)
C.其中一個(gè)對(duì)稱中心為$(\frac{11}{12}π,0)$
D.函數(shù)y=sin2x向左平移$\frac{π}{3}$個(gè)單位可得到f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=(x-1)0+$\sqrt{\frac{2}{x+1}}$的定義域是( 。
A.(-1,+∞)B.(-∞,-1)C.RD.(-1,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案