已知數(shù)列{an}的前n項(xiàng)和為Sn=3n,數(shù)列{bn}滿足b1=-1,bn+1=bn+(2n-1)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{bn}的通項(xiàng)公式bn;
(3)若cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
解:(1)∵Sn=3n,∴Sn-1=3n-1(n≥2),
∴an=Sn-Sn-1=3n-3n-1=2×3n-1(n≥2).
當(dāng)n=1時(shí),2×31-1=2≠S1=a1=3,
∴an=
(2)∵bn+1=bn+(2n-1),
∴b2-b1=1,b3-b2=3,b4-b3=5,…,bn-bn-1=2n-3.
以上各式相加得
bn-b1=1+3+5+…+(2n-3)==(n-1)2.
∵b1=-1,∴bn=n2-2n.
(3)由題意得cn=
當(dāng)n≥2時(shí),Tn=-3+2×0×31+2×1×32+2×2×33+…+2(n-2)×3n-1,
∴3Tn=-9+2×0×32+2×1×33+2×2×34+…+2(n-2)×3n,
∴相減得-2Tn=6+2×32+2×33+…+2×3n-1-2(n-2)×3n.
∴Tn=(n-2)×3n-(3+32+33+…+3n-1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知a,b是單位向量,a·b=0.若向量c滿足|c-a-b|=1,則|c|的最大值為( )
A.-1 B.
C.+1 D.+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知Sn是等差數(shù)列{an}的前n項(xiàng)和,S10>0并且S11=0,若Sn≤Sk對(duì)n∈N*恒成立,則正整數(shù)k構(gòu)成的集合為( )
A.{5} B.{6}
C.{5,6} D.{7}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}滿足an+an+1=(n∈N*),a1=-,Sn是數(shù)列{an}的前n項(xiàng)和,則S2 013=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第2 012項(xiàng)與5的差即a2 012-5=( )
A.2 018×2 012 B.2 018×2 011
C.1 009×2 012 D.1 009×2 011
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足=an+bn (n∈N*),其中{an},{bn}分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點(diǎn),若P1是線段AB的中點(diǎn).
(1)求a1,b1的值.
(2)點(diǎn)P1,P2,P3,…,Pn,…能否在同一條直線上?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com