已知函數(shù)f(n)=其中n∈N,則f(8)等于(   )

A.2                B.4                C.6                D.7

D

解析:f(8)=ff(8+5)]=ff(13)]=f(10)=7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
ax2
+bx(a≠0)
(Ⅰ)若a=-2時(shí),函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;
(Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosx+
3
cos2x-
3
2

(1)求y=f(x)在x∈[0,
π
2
]
上的單調(diào)區(qū)間和值域;
(2)把y=f(x)的圖象向右平移
π
6
個(gè)單位后得到的圖象,其大于零的零點(diǎn)從小到大組成數(shù)列{xn},求數(shù)列{xn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2+nx有兩個(gè)不同的極值點(diǎn)α,β,設(shè)f(x)在點(diǎn)(-1,f(-1))處的切線為l1,其斜率為k1;在點(diǎn)(1,f(1))處的切線為l2,其斜率為k2
(1)若m=1,n=-1,當(dāng)t∈(-1,1)時(shí),求函數(shù)f(x)在x∈[t,1]上的最小值;
(2)若k1=-
1
2
,|α-β|=
10
3
,求m,n;
(3)若α,β∈(-1,1),求k1•k2可能取到的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•棗莊一模)已知函數(shù)f(x)=
1
2
x2-2x,g(x)=loga
x(a>0,且a≠1),其中a為常數(shù),如果h(x)=f(x)+g(x)在其定義域上是增函數(shù),且h'(x)存在零點(diǎn)(h'(x)為h(x)的導(dǎo)函數(shù)).
(I)求a的值;
(Ⅱ)設(shè)A(m,g(m)),B(n,g(n))(m<n)是函數(shù)y=g(x)的圖象上兩點(diǎn),g'(x0)=
g(n)-g(m)
n-m
(g'(x)為g(x)的導(dǎo)函數(shù)),證明:m<x0<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市萬州二中2011屆高三3月月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)在其定義域上滿足xf(x)+2af(x)=x+a-1(a>0).

(1)函數(shù)y=f(x)的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);

(2)當(dāng)f(x)∈[]時(shí),求x的取值范圍;

(3)若f(0)=0,數(shù)列{an}滿足a1=1,那么:

①若0<an+1≤f(an),正整數(shù)N滿足n>N時(shí),對所有適合上述條件的數(shù)列{an},an恒成立,求最小的N;

②若an+1=f(an),求證:a1a2+a2a3+a3a4+…+anan+1

查看答案和解析>>

同步練習(xí)冊答案