(本小題滿分12分)
已知函數(shù)的圖象過(guò)點(diǎn).
(Ⅰ)求的值;
(Ⅱ)在△中,角,,的對(duì)邊分別是,,.若,求的取值范圍.
(1) (2)
解析試題分析:解:(Ⅰ)由……… 3分
因?yàn)辄c(diǎn)在函數(shù)的圖象上,所以
解得: ……………………5分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/3/1bexa2.png" style="vertical-align:middle;" />,所以
所以,即
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/f/gfpxc2.png" style="vertical-align:middle;" />,所以,所以 …………………… 9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/b/a3fxa1.png" style="vertical-align:middle;" />,所以
所以,所以
所以的取值范圍是 ……………………12分
考點(diǎn):三角函數(shù)的性質(zhì),以及解三角形兩個(gè)定理的運(yùn)用
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用向量的數(shù)量積公式表示三角函數(shù),結(jié)合二倍角公式化簡(jiǎn),研究其性質(zhì),并結(jié)合兩個(gè)定理,求解三角形,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,向量向量,且
的最小正周期為.
(1)求的解析式;
(2)已知、、分別為內(nèi)角所對(duì)的邊,且,,又恰
是在上的最小值,求及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在半徑為、圓心角為的扇形金屬材料中剪出一個(gè)長(zhǎng)方形,并且與的平分線平行,設(shè).
(1)試寫(xiě)出用表示長(zhǎng)方形的面積的函數(shù);
(2)在余下的邊角料中在剪出兩個(gè)圓(如圖所示),試問(wèn)當(dāng)矩形的面積最大時(shí),能否由這個(gè)矩形和兩個(gè)圓組成一個(gè)有上下底面的圓柱?如果可能,求出此時(shí)圓柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)已知函數(shù)
(1)用“五點(diǎn)法”作出這個(gè)函數(shù)在一個(gè)周期內(nèi)的圖象;
(2)函數(shù)圖象經(jīng)過(guò)怎樣的變換可以得到 的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)的圖像上兩相鄰最高點(diǎn)的坐標(biāo)分別為.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)函數(shù)。(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)若函數(shù)的圖像與函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖,用半徑為R的圓鐵皮,剪一個(gè)圓心角為的扇形,制成一個(gè)圓錐形的漏斗,問(wèn)圓心角取什么值時(shí),漏斗容積最大.(圓錐體積公式:,其中圓錐的底面半徑為r,高為h)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com