14.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(x,6)$,且$\overrightarrow a$∥$\overrightarrow b$,則$|\overrightarrow a-\overrightarrow b|$=2$\sqrt{5}$.

分析 利用向量共線定理、模的計(jì)算公式即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,∴2x-6=0,解得x=3.
則$\overrightarrow{a}-\overrightarrow$=(-2,-4),
則$|\overrightarrow a-\overrightarrow b|$=$\sqrt{(-2)^{2}+(-4)^{2}}$=2$\sqrt{5}$.
故答案為:$2\sqrt{5}$.

點(diǎn)評 本題考查了向量共線定理、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖正方體ABCD-A′B′C′D′中,E、F為中點(diǎn),
(1)AC與A′D′所成角的大小是45°.
(2)AC與A′D 所成角的大小是60°.
(3)A′E與BF所成角的大小是90°.
(本題只需在橫線上填上正確的角度即可,無需寫出解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合M={x|log2x<1},集合N={x|x2-1≤0},則M∩N=( 。
A.{x|1≤x<2}B.{x|-1≤x<2}C.{x|-1<x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-m|-|x+3m|(m>0).
(Ⅰ)當(dāng)m=1時,求不等式f(x)≥1的解集;
(Ⅱ)對于任意實(shí)數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是( 。
A.“m∥α,m∥β”是“α∥β”的充分不必要條件
B.m∥n時,“m∥β”是“n∥β”的必要不充分條件
C.n?α?xí)r,“m⊥α”是“m⊥n”的既不充分也不必要條件
D.m⊥α,n⊥β時,“m⊥n”是“α⊥β”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖1,在直角梯形ABCD中,AB⊥BC,BC∥AD,AD=2AB=4,BC=3,E為AD中點(diǎn),EF⊥BC,垂足為F.沿EF將四邊形ABFE折起,連接AD,AC,BC,得到如圖2所示的六面體ABCDEF.若折起后AB的中點(diǎn)M到點(diǎn)D的距離為3.

(Ⅰ)求證:平面ABFE⊥平面CDEF;
(Ⅱ)求六面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<2}\\{{x}^{2},x≥2}\end{array}\right.$,若f(a+1)≥f(2a-1),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)是定義在R上的奇函數(shù),對任意兩個正數(shù)x1,x2(x1<x2)都有$\frac{{f({x_1})}}{x_1}>\frac{{f({x_2})}}{x_2}$,記$a=25f({{{0.2}^2}}),b=f(1),c=-{log_5}3×f({{{log}_{\frac{1}{3}}}5})$,則a,b,c之間的大小關(guān)系為(  )
A.a>b>cB.b>c>aC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}是公差不為0的等差數(shù)列,首項(xiàng)a1=1,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an+2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案