9.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題正確的是( 。
A.“m∥α,m∥β”是“α∥β”的充分不必要條件
B.m∥n時,“m∥β”是“n∥β”的必要不充分條件
C.n?α?xí)r,“m⊥α”是“m⊥n”的既不充分也不必要條件
D.m⊥α,n⊥β時,“m⊥n”是“α⊥β”的充要條件

分析 利用線面面面平行與垂直的判定及其性質(zhì)定理即可判斷出關(guān)系.

解答 解:A.“m∥α,m∥β”是“α∥β”的既不充分也不必要條件,因此不正確;
B.m∥n時,“m∥β”是“n∥β”的既不充分也不必要條件,因此不正確;
C.n?α?xí)r,“m⊥α”是“m⊥n”的充分但不必要條件,因此不正確;
D.m⊥α,n⊥β時,“m⊥n”是“α⊥β”的充要條件,正確.
故選:D.

點評 本題考查了線面面面平行與垂直的判定及其性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若log2x+log2y=3,則2x+y的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=3sin(ωx+ϕ)$(ω>0,|ϕ|≤\frac{π}{2})$的部分圖象如圖所示,A,B兩點之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長度后所得函數(shù)圖象關(guān)于y軸對稱,則t的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司在迎新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇.
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為$\frac{4}{5}$,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為$\frac{2}{5}$,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)$z=2i+\frac{2}{1+i}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(x,6)$,且$\overrightarrow a$∥$\overrightarrow b$,則$|\overrightarrow a-\overrightarrow b|$=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=x{e^x}-a(\frac{x^2}{2}+x)(a∈R)$.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.要得到函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象,只要將函數(shù)y=sinx的圖象( 。
A.先向左平移$\frac{π}{6}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍
B.先向右平移$\frac{π}{6}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?倍
C.先向左平移$\frac{π}{3}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍
D.先向右平移$\frac{π}{3}$個單位,再將各點橫坐標(biāo)變?yōu)樵瓉淼?倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點M與雙曲線C的焦點不重合,點M關(guān)于F1,F(xiàn)2的對稱點分別為A,B,線段MN的中點在雙曲線的右支上,若|AN|-|BN|=12,則a=( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案