乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負方得0分.設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時乙的得分,求的期望.

(1);(2).

解析試題分析:記表示事件:第1次和第2次這兩次發(fā)球,甲共得分,;表示事件:第3次發(fā)球,甲得1分;表示事件:開始第4次發(fā)球時,甲乙的比分為1比2.(1)“開始第4次發(fā)球時,甲乙的比分為1比2”包括以下兩種情況:前2次甲得0分第3次得1分和前2次甲得1分第3次得0分,即.根據(jù)互斥事件與獨立事件的概率的求法即可得其概率.(2)開始第4次發(fā)球時,前面共發(fā)球3次,所以乙的得分最多為3分,即的可能取值為0,1,2,3.,都很易求出,在(1)題中已經(jīng)求得,最麻煩,可用對立事件的概率公式求得,即,然后根據(jù)期望的公式求得期望.
試題解析:記表示事件:第1次和第二次這兩次發(fā)球,甲共得分,
表示事件:第3次發(fā)球,甲得1分;
表示事件:開始第4次發(fā)球時,甲乙的比分為1比2.
(1).
         3分
      ..6分
(2).
的可能取值為0,1,2,3.
.
.
.
   .10分
(或

                ..12分
考點:1、獨立事件的概率;2、隨機變量的期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某中學有A、B、C、D、E五名同學在高三“一檢”中的名次依次為1,2,3,4,5名,“二檢”中的前5名依然是這五名同學.
(1)求恰好有兩名同學排名不變的概率;
(2)如果設同學排名不變的同學人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場為促銷設計了一個抽獎模型,一定數(shù)額的消費可以獲得一張抽獎券,每張抽獎券可以從一個裝有大小相同的4個白球和2個紅球的口袋中一次性摸出3個球,至少摸到一個紅球則中獎.
(1)求一次抽獎中獎的概率;
(2)若每次中獎可獲得10元的獎金,一位顧客獲得兩張抽獎券,求兩次抽獎所得的獎金額之和X(元)的概率分布.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個數(shù);
(2)求隨機變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有驅蟲藥1618和1573各3杯,從中隨機取出3杯稱為一次試驗(假定每杯被取到的概率相等),將1618全部取出稱為試驗成功.
(1)求恰好在第3次試驗成功的概率(要求將結果化為最簡分數(shù)).
(2)若試驗成功的期望值是2,需要進行多少次相互獨立重復試驗?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,A地到火車站共有兩條路徑L1和L2,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內的頻率如下表:

時間(分鐘)
10~20
20~30
30~40
40~50
50~60
L1的頻率
0.1
0.2
0.3
0.2
0.2
L2的頻率
0
0.1
0.4
0.4
0.1
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.
(1)為了盡最大可能在各自允許的時間內趕到火車站,甲和乙應如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內能趕到火車站的人數(shù),針地(1)的選擇方案,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解心肺疾病是否與年齡相關,現(xiàn)隨機抽取了40名市民,得到數(shù)據(jù)如下表:

 
患心肺疾病
不患心肺疾病
合計
大于40歲
16
 
 
小于等于40歲
 
12

合計
 
 
40
已知在全部的40人中隨機抽取1人,抽到不患心肺疾病的概率為
(1)請將列聯(lián)表補充完整;
(2)已知大于40歲患心肺疾病市民中,經(jīng)檢查其中有4名重癥患者,專家建議重癥患者住院治療,現(xiàn)從這16名患者中選出兩名,記需住院治療的人數(shù)為,求的分布列和數(shù)學期望;
(3)能否在犯錯誤的概率不超過0.01的前提下認為患心肺疾病與年齡有關?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個生物小組分別獨立開展對該生物離開恒溫箱的成活情況進行研究,每次試驗一個生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試驗后生物成活,則稱該試驗成功,如果生物不成活,則稱該次試驗是失敗的.
(1)甲小組做了三次試驗,求至少兩次試驗成功的概率;
(2)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進行2次試驗,設試驗成功的總次數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

觀察下面一組組合數(shù)等式:
;

;
…………
(1)由以上規(guī)律,請寫出第個等式并證明;
(2)隨機變量,求證:.

查看答案和解析>>

同步練習冊答案