(本小題13分)如圖,棱錐的底面是矩形,⊥平面,,

(1)求證:⊥平面;
(2)求二面角的大;
(3)求點(diǎn)到平面的距離.
(1)見(jiàn)解析;(2);(3)

試題分析:(方法一)證明:(1)在中,,
所以為正方形,因此. ∵⊥平面,平面
.又∵, ∴⊥平面.                    ……4分               
(2)解:由⊥平面,知在平面內(nèi)的射影,
,∴,知為二面角的平面角.   
又∵,∴ .                                     ……9分                                                    
(3)∵,∴,
設(shè)到面的距離為,
,有,                        

.                                                        ……14分       
(方法二)證明:(Ⅰ)建立如圖所示的直角坐標(biāo)系,

、、.
中, ,,
   ∵
,又∵, ∴⊥平面.          ……4分               
解:(2)由(Ⅰ)得.
設(shè)平面的法向量為,則
,∴  故平面的法向量可取為                               
⊥平面,∴為平面的法向量. 
設(shè)二面角的大小為,依題意可得,
                                                          ……9分                                                     
(3)由(Ⅰ)得,
設(shè)平面的法向量為
,即,∴,
故平面的法向量可取為.                             
,∴到面的距離為.         ……14分
點(diǎn)評(píng):解決空間中的平行、垂直以及距離等問(wèn)題,有傳統(tǒng)方法和向量方法兩種方法,用傳統(tǒng)方法時(shí),要注意緊扣定理,把符合定理的條件都列出來(lái);用向量方法時(shí),運(yùn)算量較大,要仔細(xì)、快速進(jìn)行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點(diǎn).

(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點(diǎn)D到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在四棱錐中,底面是矩形,平面,,分別是的中點(diǎn).

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形所在的平面與正方形所在的平面相互垂直,、分別是、的中點(diǎn).
 
(1)求證:面
(2)求直線與平面所成的角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)四棱錐的底面是正方形,,點(diǎn)E在棱PB上.若AB=,
(Ⅰ)求證:平面;   
(Ⅱ)若E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=.

(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)設(shè)PM="t" MC,若二面角M-BQ-C的平面角的大小為30°,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點(diǎn).

(1)求證:D、E、F、G四點(diǎn)共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面體PABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

關(guān)于直線a,b,c以及平面M,N,給出下面命題:
①若a//M,b//M, 則a//b  ②若a//M, b⊥M,則b⊥a   ③若aM,bM,且c⊥a,c⊥b,則c⊥M   ④若a⊥M, a//N,則M⊥N,其中正確命題的個(gè)數(shù)為(   )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,,則的位置關(guān)系是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案