(本小題滿分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點.

(1)求證:D、E、F、G四點共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面體PABC的體積.
(1)只需證DG//EF; (2)只需證AB⊥面POC;(3)

試題分析:(1)依題意DG//AB……1分,
EF∥AB…2分,
所以DG//EF……3分,
DG、EF共面,從而D、E、F、G四點共面……4分。
(2)取AB中點為O,連接PO、CO……5分
因為PA=PB, CA=CB,所以PO⊥AB,CO⊥AB……7分,
因為PO∩CO=D,所以AB⊥面POC……8分
PC面POC,所以AB⊥PC……9分
(3)因為△ABC和PAB是等腰直角三角形,所以…10分,
因為所以O(shè)P⊥OC……11分,
又PO⊥AB,且AB∩OC=O,所以PO⊥面ABC……12分
……14分(公式1分,其他1分)
點評:第三問,把三棱錐P-ABC體積的求法轉(zhuǎn)化為求棱錐A-POB和棱錐B-POC的體積之和是解決問題的關(guān)鍵。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐A-BCDE中,底面四邊形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中點,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)證明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題13分)如圖,棱錐的底面是矩形,⊥平面,,

(1)求證:⊥平面;
(2)求二面角的大。
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在三棱柱中,側(cè)棱,點的中點,
(1)求證:∥平面;
(2)為棱的中點,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,幾何體是四棱錐,△為正三角形,.
(1)求證:;
(2)若∠,M為線段AE的中點,求證:∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個平面垂直,下列命題中:
(1)一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的任意一條直線;
(2)一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的無數(shù)條直線;
(3)一個平面內(nèi)的任意一條直線必垂直于另一個平面;
(4)過一個平面內(nèi)任意一點作交線的垂線,則此垂線必垂直于另一個平面.
其中正確命題的個數(shù)有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱柱中,、所成角均為,,且,則三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線和平面, 則下列命題正確的是
A.若,,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、為兩個不同的平面,、為三條互不相同的直線,
給出下列四個命題:
①若,,則;
②若,,則;
③若,,則;
④若、是異面直線,,,則
其中真命題的序號是(   )
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

同步練習(xí)冊答案