【題目】在直四棱柱中,底面是菱形,,,分別是線段、的中點.

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

1)連接,交于點,利用菱形對角線的性質(zhì)得出,由直棱柱的性質(zhì)得出平面,可得出,由直線與平面垂直的判定定理可證明出平面,由此可證明出;

2)以為坐標原點,,分別為軸,過點垂直于平面的直線為軸,建立如圖的空間直角坐標系,然后利用空間向量法計算出平面與平面所成銳二面角的余弦值.

1)連接,交于點.

因為四邊形是菱形,所以.

因為四棱柱是直四棱柱,所以平面.

因為平面,所以.

因為,所以平面.

因為平面,所以;

2)由(1)知,以為坐標原點,,分別為,軸,過點垂直于平面的直線為軸,建立如圖的空間直角坐標系.

因為,所以,因為底面四邊形為菱形,且,

所以,又因為分別是線段、的中點,

所以,,

所以,.

設(shè)平面的一個法向量為,則.

,得.

易知為平面的一個法向量.

設(shè)平面與平面所成的銳二面角為,

所以,

所以平面與平面所成銳二面角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖為我國數(shù)學家趙爽3世紀初在為《周髀算經(jīng)》作注時驗證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個小區(qū)域涂色,規(guī)定每個區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,,又數(shù)列滿足:.

(1)求證:數(shù)列是等比數(shù)列;

(2)若數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;

(3)若數(shù)列的各項皆為正數(shù),,設(shè)是數(shù)列的前項和,問:是否存在整數(shù),使得數(shù)列是單調(diào)遞減數(shù)列?若存在,求出整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù)。

(1)證明:內(nèi)存在唯一的極小值點;

(2)證明:當時,有且只有兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖如下.

組號

分組

頻數(shù)

1

[0,2)

6

2

[2,4)

8

3

[4,6)

17

4

[6,8)

22

5

[8,10)

25

6

[10,12)

12

7

[12,14)

6

8

[14,16)

2

9

[16,18)

2

合計

100

(1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的頻率;

(2)求頻率分布直方圖中的a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形幾何圖形,由波蘭數(shù)學家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構(gòu)造方法是:

1)取一個實心的等邊三角形(圖1);

2)沿三邊中點的連線,將它分成四個小三角形;

3)挖去中間的那一個小三角形(圖2);

4)對其余三個小三角形重復(1)(2)(3)(4)(圖3.

制作出來的圖形如圖4,….

若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知橢圓的離心率是,斜率不為0的直線相交于、兩點,與軸相交于點.

1)若、分別是的左、右焦點,當經(jīng)過時,求的值;

2)試探究,是否存在點,使得?若存在,請寫出滿足條件的、的關(guān)系式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年底,我國發(fā)明專利申請量已經(jīng)連續(xù)年位居世界首位,下表是我國年至年發(fā)明專利申請量以及相關(guān)數(shù)據(jù).

注:年份代碼分別表示.

1)可以看出申請量每年都在增加,請問這幾年中哪一年的增長率達到最高,最高是多少?

2)建立關(guān)于的回歸直線方程(精確到),并預測我國發(fā)明專利申請量突破萬件的年份.

參考公式:回歸直線的斜率和截距的最小二乘法估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水車在古代是進行灌溉引水的工具,是人類的一項古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個半徑為R的水車,一個水斗從點A(3,-3)出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),且旋轉(zhuǎn)一周用時60秒.經(jīng)過t秒后,水斗旋轉(zhuǎn)到P點,設(shè)P的坐標為(x,y),其縱坐標滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).則下列敘述錯誤的是(  )

A.R=6,ω=,φ=-

B.當t∈[35,55]時,點P到x軸的距離的最大值為6

C.當t∈[10,25]時,函數(shù)y=f(t)單調(diào)遞減

D.當t=20時,|PA|=6

查看答案和解析>>

同步練習冊答案