【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形幾何圖形,由波蘭數(shù)學家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構造方法是:

1)取一個實心的等邊三角形(圖1);

2)沿三邊中點的連線,將它分成四個小三角形;

3)挖去中間的那一個小三角形(圖2);

4)對其余三個小三角形重復(1)(2)(3)(4)(圖3.

制作出來的圖形如圖4,….

若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為(

A.B.C.D.

【答案】C

【解析】

根據(jù)圖形的特點,觀察規(guī)律,即可歸納出相鄰圖形之間的面積關系,由此求出.

設圖1的面積為,圖2被挖去的面積占圖1面積的,則圖2陰影部分的面積為,同理圖3被挖去的面積占圖2面積的,所以圖3陰影部分的面積為,按此規(guī)律圖1、圖2、圖3…的面積組成等比數(shù)列:,公比為.由已知圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為,

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

求證:恒成立;

,若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面.

(1)求證:平面;

(2)點在線段上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線和曲線,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.

(1)求曲線和曲線的直角坐標方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直四棱柱中,底面是菱形,,、分別是線段、的中點.

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱柱的所有棱長都為2,且.

1)證明:平面平面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐SABCD的底面為矩形,SA⊥底面ABCD,點E在線段BC上,以AD為直徑的圓過點 E.若SAAB=3,則△SED面積的最小值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構思提出后,某科技企業(yè)為抓住一帶一路帶來的機遇,決定開發(fā)生產(chǎn)一款大型電子設備.生產(chǎn)這種設備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本萬元,當年產(chǎn)量不足60臺時,萬元;當年產(chǎn)量不小于60臺時,萬元若每臺設備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設備能全部售完.

求年利潤萬元關于年產(chǎn)量的函數(shù)關系式;

當年產(chǎn)量為多少臺時,該企業(yè)在這一電子設備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個,一排中各個釘子恰好對準上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個直徑略小于兩顆釘子間隔的小球,當小球從兩釘之間的間隙下落時,由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個出口處各放置一個容器接住小球.

(Ⅰ)理論上,小球落入4號容器的概率是多少?

(Ⅱ)一數(shù)學興趣小組取3個小球進行試驗,設其中落入4號容器的小球個數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案