分析 (1)推導(dǎo)出AC⊥BD,從而EO⊥AC,EO⊥BD,由此能證明直線EO⊥平面ABCD.
(2)以O(shè) 為原點(diǎn),OA為x軸,OB為y軸,OE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角D-BM-C的平面角的余弦值.
解答 證明:(1)∵△ABD 為正三角形,∠BCD=120°,CB=CD=CE=1,
∴AC⊥BD,且CO=$\frac{1}{2}$,AO=$\frac{3}{2}$,
連接EO,則$\frac{EO}{CE}=\frac{CE}{AC}$,∴EO⊥AC,
又∵O是BD中點(diǎn),故EO⊥BD,
∵AC∩BD=O,
∴直線EO⊥平面ABCD.
解:(2)如圖,以O(shè) 為原點(diǎn),OA為x軸,OB為y軸,OE為z軸,建立空間直角坐標(biāo)系,
則B(0,$\frac{\sqrt{3}}{2}$,0),D(0,-$\frac{\sqrt{3}}{2}$,0),C(-$\frac{1}{2}$,0,0),M($\frac{3}{4}$,0,$\frac{3}{4}$),
$\overrightarrow{DM}$=($\frac{3}{4},\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{4}$),$\overrightarrow{DB}=(0,\sqrt{3},0)$,
設(shè)DBM的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=\sqrt{3}y=0}\\{\overrightarrow{m}•\overrightarrow{DM}=\frac{3}{4}x+\frac{\sqrt{3}}{2}y+\frac{\sqrt{3}}{4}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{m}$(-$\frac{\sqrt{3}}{3}$,0,1),
$\overrightarrow{CB}$=($\frac{1}{2},\frac{\sqrt{3}}{2},0$),$\overrightarrow{CM}$=($\frac{5}{4},0,\frac{\sqrt{3}}{4}$),
同理得平面CBM的法向量$\overrightarrow{n}=(-\frac{\sqrt{3}}{5},\frac{1}{5},1)$,
設(shè)二面角D-BM-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{87}}{29}$.
故二面角D-BM-C的平面角的余弦值為 $\frac{3\sqrt{87}}{29}$.
點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 75° | B. | 120° | C. | 135° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com