分析 (1)把函數(shù)式f(x)=sin2x+cos2x化積為y=$\sqrt{2}$sin(2x+$\frac{π}{4}$),然后利用周期公式即可計算得解.
(2)利用三角函數(shù)的圖象平移得到y(tǒng)=$\sqrt{2}$sin(2x+$\frac{π}{4}$-2φ).結合該函數(shù)為偶函數(shù)即可求得φ的最小正值.
解答 解:(1)∵f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴函數(shù)周期T=$\frac{2π}{2}$=π.
(2)將f(x)的圖象向右平移φ個單位,
所得圖象的函數(shù)解析式為:y=$\sqrt{2}$sin[2(x-φ)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x+$\frac{π}{4}$-2φ).
又所得圖象關于y軸對稱,則$\frac{π}{4}$-2φ=kπ+$\frac{π}{2}$,k∈Z.
∴當k=-1時,φ有最小正值是$\frac{3π}{8}$.
點評 本題考查了三角函數(shù)的圖象平移,三角函數(shù)周期公式的應用,考查了三角函數(shù)奇偶性的性質,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<λ2<λ1 | B. | λ2<λ1<0 | C. | λ1<λ2<0 | D. | 0<λ1<λ2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com