sin50°sin70°-cos50°sin20°的值等于( 。
A、
1
4
B、
3
2
C、
1
2
D、
3
4
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由誘導(dǎo)公式五可得sin70°=cos20°,進(jìn)而利用兩角差的正弦公式,可得答案.
解答: 解:sin50°sin70°-cos50°sin20°
=sin50°cos20°-cos50°sin20°
=sin(50°-20°)
=sin30°
=
1
2
,
故選:C.
點(diǎn)評:本題考查的知識(shí)點(diǎn)是兩角差的正弦函數(shù)公式,其中將sin70°轉(zhuǎn)化為cos20°,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=cos2x+
3
x的所有正的極大值點(diǎn)從小到大依次排成數(shù)列{xn},θn=x1+x2+…+xn,則下列命題正確的是
 
(寫出你認(rèn)為正確的所有命題的序號)
①函數(shù)f(x)=cos2x+
3
x在x=
π
3
處取得極大值;
②數(shù)列{xn}是等差數(shù)列;
③sinθn≥sinθn+1對于任意正整數(shù)n恒成立;
④存在正整數(shù)T,使得對于任意正整數(shù)n,都有sinθn=sinθn+T成立;
⑤n取所有的正整數(shù),sinθn的最大值為
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC的兩條直角邊AC、BC的長分別為4cm、3cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,則BD的長為
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin
x
2
的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
A、若m∥α,n∥α,則m∥n
B、若α∥β,m?α,n?β,則m∥n
C、若α⊥β=m,n?α,則n⊥β
D、若m⊥α,m∥n,n?β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用一個(gè)平行于棱錐底面的平面截這個(gè)棱錐,截得的棱臺(tái)上、下底面面積比為1:4,截去的棱錐的高是3cm,則棱臺(tái)的高是( 。
A、12cmB、9cm
C、6cmD、3cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“?p∨?q是假命題,給出下列四個(gè)結(jié)論:
(1)命題p∧q為真   
(2)命題p∧q為假 
(3)命題p∨q為真  
(4)命題p∨q為假  
其中正確的為( 。
A、(1)(3)
B、(2)(3)
C、(1)(4)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x3-3x2+1=0的實(shí)根的個(gè)數(shù)為( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l,m,n為互不重合的三條直線,平面α⊥平面β,α∩β=l,m?α,n?β,那么m⊥n是m⊥β的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案