(3x2-4x+7)(1-
1
x2
)5
展開式中的常數(shù)項(xiàng)為______.
∵要求兩個(gè)多項(xiàng)式的積中的常數(shù)項(xiàng),
∴3x2要與(1-
1
x2
5展開式的-
C15
1
x2
相乘,結(jié)果是-15,
7要與C50相乘,得到結(jié)果是7,
綜上有常數(shù)項(xiàng)是-15+7=-8,
故答案為:-8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•昆明模擬)(3x2-4x+7)(1-
1x2
)5
展開式中的常數(shù)項(xiàng)為
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年大連市高二六月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù)f(x)=x3+bx2+cx+d (b,c,d∈R且都為常數(shù))的導(dǎo)函數(shù)f¢(x)=3x2+4x且f(1)=7,設(shè)F(x)=f(x)-ax2

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對(duì)任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范圍;

(3)在(2)的條件下比較a2-13a+39與的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=(m∈R,e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)f(x)的極值;

(2)當(dāng)x>0時(shí),設(shè)f(x)的反函數(shù)為f-1(x),對(duì)0<p<q,試比較f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為f′(x)=3x2+4x,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對(duì)任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式a2-13a+39≥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=(m∈R,e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)f(x)的極值;

(2)當(dāng)x>0時(shí),設(shè)f(x)的反函數(shù)為f-1(x),對(duì)0<p<q,試比較f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為f′(x)=3x2+4x,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對(duì)任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式a2-13a+39≥.

查看答案和解析>>

同步練習(xí)冊(cè)答案