如圖,幾何體是四棱錐,△為正三角形,.
(1)求證:;
(2)若∠,M為線段AE的中點(diǎn),求證:∥平面.
(1)見解析 (2) 見解析
【解析】本題考查直線與平面平行的判定,考查線面垂直的判定定理與面面平行的判定定理的應(yīng)用,著重考查分析推理能力與表達(dá)、運(yùn)算能力,屬于中檔題.
(1)設(shè)BD中點(diǎn)為O,連接OC,OE,則CO⊥BD,CE⊥BD,于是BD⊥平面OCE,從而BD⊥OE,即OE是BD的垂直平分線,問題解決;
(2)證法一:取AB中點(diǎn)N,連接MN,DN,MN,易證MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可證得平面DMN∥平面BEC,又DM⊂平面DMN,于是DM∥平面BEC;
證法二:延長AD,BC交于點(diǎn)F,連接EF,易證AB= AF,D為線段AF的中點(diǎn),連接DM,則DM∥EF,由線面平行的判定定理即可證得結(jié)論.
(I)設(shè)中點(diǎn)為O,連接OC,OE,則由知,,…………2分
又已知,所以平面OCE. …………4分
所以,即OE是BD的垂直平分線,
所以.…………6分
(II)取AB中點(diǎn)N,連接,
∵M(jìn)是AE的中點(diǎn),∴∥,…………8分
∵△是等邊三角形,∴.
由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即,
所以ND∥BC,…………10分[來源:Z*xx*k.Com]
所以平面MND∥平面BEC,故DM∥平面BEC. …………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(山東卷解析版) 題型:解答題
如圖,幾何體是四棱錐,△為正三角形,.
(Ⅰ)求證:;
(Ⅱ)若∠,M為線段AE的中點(diǎn),
求證:∥平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com