已知在四棱錐中,底面是矩形,平面,,,分別是的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
(1)證明過(guò)程詳見解析;(2).
【解析】
試題分析:本題主要以四棱錐為幾何背景,考查線面平行的判定和二面角的求法,可以運(yùn)用傳統(tǒng)幾何法,也可以用空間向量方法求解,突出考查空間想象能力和計(jì)算能力.第一問(wèn),利用線面平行的判定定理,先找出面內(nèi)的一條線,利用平行四邊形證明,從而證明線面平行;第二問(wèn),用向量法解題,先建立直角坐標(biāo)系,求出2個(gè)平面的法向量,再求夾角.
試題解析: (1)證明:取的中點(diǎn),連結(jié).
∴,且,
又,∴.
又是的中點(diǎn),且,
∴,∴四邊形是平行四邊形.
∴.
又平面,平面.
∴平面.(6分)
(2)解:以為原點(diǎn),如圖建立直角坐標(biāo)系,則,,, ,,,.
設(shè)平面的法向量為,,.
則可得,令,則.
易得平面的法向量可為,
;
如圖,易知二面角的余弦值等于,即為. (12分)
考點(diǎn):1.線面平行的判定定理;2.向量法求二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆云南省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知在四棱錐中,底面是矩形,平面,、分別是、的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成角為,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年貴州省六高三第一次考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點(diǎn), 是線段上的點(diǎn).
(I)當(dāng)是的中點(diǎn)時(shí),求證:平面;
(II)要使二面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點(diǎn).
(1)證明:;
(2)判斷并說(shuō)明上是否存在點(diǎn),使得∥平面;
(3)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高考模擬預(yù)測(cè)卷(三)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知在四棱錐中,底面是矩形,且,,平面,、分別是線段、的中點(diǎn).
(1)證明:;
(2)判斷并說(shuō)明上是否存在點(diǎn),使得∥平面;
(3)若與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com