2.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 由三視圖知該幾何體是一個三棱錐,由三視圖求出幾何元素的長度,由錐體的體積公式求出幾何體的體積.

解答 解:根據三視圖可知幾何體是一個三棱錐,
由俯視圖和側視圖知,底面是一個直角三角形,兩條直角邊分別是2、1,
由正視圖知,三棱錐的高是1,
∴該幾何體的體積V=$\frac{1}{3}×\frac{1}{2}×2×1×1$=$\frac{1}{3}$,
故選:C.

點評 本題考查三視圖求幾何體的體積以,由三視圖正確復原幾何體是解題的關鍵,考查空間想象能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.
(Ⅰ)證明:BD⊥平面DEC;
(Ⅱ)若二面角A-ED-B的大小為30°,求EC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某課題組對全班45名同學的飲食習慣進行了一次調查,并用莖葉圖表示45名同學的飲食指數(shù).說明:如圖中飲食指數(shù)低于70的人被認為喜食蔬菜,飲食指數(shù)不低于70的人被認為喜食肉類
(1)求飲食指數(shù)在[10,39]女同學中選取2人,恰有1人在[10,29]中的概率;
(2)根據莖葉圖,完成下面2×2列聯(lián)表,并判斷是否有90%的把握認為喜食蔬菜還是喜食肉類與性別有關,說明理由:
喜食蔬菜喜食肉類合計
男同學
女同學
合計
附:參考公式:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
下面臨界值表僅供參考:
P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x3-3ax-1,a≠0.
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若f(x)在x=-1處取得極值,且函數(shù)g(x)=f(x)-m有三個零點,求實數(shù)m的取值范圍;
(Ⅲ)設h(x)=f(x)+(3a-1)x+1,證明過點P(2,1)可以作曲線h(x)的三條切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.某旅行達人準備一次旅行,考慮攜帶A,B,C三類用品,這三類用品每件重量依次為1kg,2kg,3kg,每件用品對于旅行的重要性賦值依次為2,2,4,設每類用品的可能攜帶的數(shù)量依次為x1,x2,x3(xi≥1,i=1,2,3),且攜帶這三類用品的總重量不得超過11kg.當攜帶這三類用品的重要性指數(shù)2x1+2x2+4x3最大時,則x1,x2,x3的值分別為6,1,1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=2an+2n,數(shù)列{bn}滿足bn=$\frac{40\sqrt{2}-2n}{n}$an,存在m∈N*,使得對?n∈N*,不等式bn≤bm恒成立.則m的值為27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,直四棱柱ABCD-A1B1C1D1中,底面為直角梯形,∠BAD=90°,且AB=BC=AA1=10,AD=2DC=8.
(1)E為AB上一點,C1E∥平面AA1D1D,確定E的位置;
(2)F為AA1中點,求FC1與側面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為46.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若x+(x+1)10=a0+a1(x+2)+a2(x+2)2+…+a9(x+2)9+a10(x+2)10,則a1+a3+a5+a7+a9=( 。
A.510B.-511C.512D.-512

查看答案和解析>>

同步練習冊答案