設(shè)集合A={x|
x
x-2
<0
},B={y|y=2x,x>0},則A∩B=( 。
A、(0,2)
B、(1,2)
C、(0,1)
D、(一∞,0)
考點:其他不等式的解法,交集及其運算,指數(shù)函數(shù)的單調(diào)性與特殊點
專題:計算題
分析:解分式不等式求得集合A,利用指數(shù)函數(shù)的單調(diào)性和特殊點,解指數(shù)不等式求出B,再利用兩個集合的交集的定義求出A∩B.
解答: 解:∵集合A={x|
x
x-2
<0
}={x|x(x-2)<0}={x|0<x<2},
B={y|y=2x,x>0}={y|y>1 },
∴A∩B={x|0<x<2}∩{x|x>1}={x|1<x<2},
故選B.
點評:本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,分式不等式的解法,兩個集合的交集的定義和求法,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)設(shè)點A(p,q)在|p|≤3,|q|≤3范圍內(nèi)均勻分布,求一元二次方程x2-2px-q2+1=0有實根的概率.
(2)p是從0,1,2,3四個數(shù)中任取的一個數(shù),q是從0,1,2,三個數(shù)中任取的一個數(shù),求上述x2-2px-q2+1=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各組集合中,表示同一集合的有
 

①M={(2,3)},N={(3,2)};
②M={2,3},N={3,2};
③M={y|y=2x+1,x∈R},N={y|y=x+2,x∈R};
④M={y|y=x-2,x∈R},N={(x,y)|y=x-2,x∈R}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+x=2,則下列說中,正確的是( 。
A、方程兩根和是1
B、方程兩根積是2
C、方程兩根和是-1
D、方程兩根積是-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(a-
π
3
)=
1
3
,則cos(
π
3
+2a
)的值等于( 。
A、
4
2
9
B、-
4
2
9
C、-
7
9
D、
7
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是一個幾何體的三視圖,則該幾何體的側(cè)面積是( 。
A、12πB、18π
C、24πD、30π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)設(shè)圓(x+3)2+(y+5)2=r2上有且只有兩點到直線4x-3y=2的距離等于1.則圓的半徑r的取值范圍是( 。
A、1<r<
6
5
B、r>
4
5
C、
4
5
<r<
6
5
D、r>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)定義在R上,對于任意實數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1.
Ⅰ.求證:f(0)=1;
Ⅱ.當x<0時,比較f(x)與1的大小;
Ⅲ.判斷f(x)在R上的單調(diào)性,并證明你的結(jié)論;
Ⅳ.如果f(3)=
1
8
,試求f(2002)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形ABC中,已知A(-1,0),C(1,0),且sinA+sinC=2sinB,動點B的軌跡方程(  )
A、
x2
3
+
y2
4
=1(x<0)
B、
x2
3
+
y2
4
=1(y≠0)
C、
x2
4
+
y2
3
=1(y≠0)
D、
x2
4
+
y2
3
=1(x<0)

查看答案和解析>>

同步練習冊答案