如圖,在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個(gè)頂點(diǎn)坐標(biāo):A(0,0),B(3,
3
),C(4,0).
(1)求邊CD所在直線的方程(結(jié)果寫(xiě)成一般式);
(2)證明平行四邊形ABCD為矩形,并求其面積.
考點(diǎn):直線的斜截式方程
專(zhuān)題:直線與圓
分析:(1)由于平行四邊形ABCD的對(duì)邊平行,故求邊CD所在直線的方程即為求過(guò)C與AB平行的直線;
(2)由于AB的斜率,與BC的斜率之積為-1,故平行四邊形ABCD為為矩形,再由兩點(diǎn)間的距離公式即可求其面積.
解答: 解:由于平行四邊形ABCD的三個(gè)頂點(diǎn)坐標(biāo):A(0,0),B(3,
3
),C(4,0)

kAB=
3
-0
3-0
=
3
3
,kBC=
3
-0
3-4
=-
3
,
(1)由于AB∥CD,則直線CD的方程為:y-0=
3
3
(x-4),
即邊CD所在直線的方程為:x-
3
y
-4=0;
(2)由于kAB=
3
-0
3-0
=
3
3
,
kBC=
3
-0
3-4
=-
3

則直線AB與BC的斜率之積為-1,即AB⊥BC,
故平行四邊形ABCD為矩形,
又由AB=
3+32
=2
3
,BC=
1+3
=2
,
則矩形ABCD的面積為4
3
點(diǎn)評(píng):本題考查了直線的方程形式,以及兩點(diǎn)間的距離公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x+1,那么x<0時(shí),f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下面一組等式

可得 S1+S3+S5+…+S2n-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四邊形ABCD為正方形,E為CD邊的中點(diǎn),且
AB
=
a
,
AD
=
b
,則
BE
等于( 。
A、
a
+
1
2
b
B、
b
+
1
2
a
C、
a
-
1
2
b
D、
b
-
1
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求滿足下列條件的概率
(1)先后拋擲一枚骰子兩次,將得到的點(diǎn)數(shù)分別記為a,b.
①求a+b=4的概率;
②求點(diǎn)(a,b)滿足a+b≤4的概率;
(2)設(shè)a,b均是從區(qū)間[0,6]任取的一個(gè)數(shù),求滿足a+b≤4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合A,B,定義一種新運(yùn)算:A⊕B={x|x∈A或x∈B,但x∉A∩B},又已知A={0,1,2},B={1,2,3},則A⊕B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c且asinAsinB+bcos2A=
2
a,則
b
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=2,a4=16.
(l)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列bn=lgan,證明數(shù)列{bn}是等差數(shù)列并求前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(8,0),B、C兩點(diǎn)分別在y軸上和x軸上運(yùn)動(dòng),并且滿足
AB
BP
=0,
BC
=
CP
,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若過(guò)點(diǎn)A的直線l與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),
QM
QN
=97,其中Q(-1,0),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案