已知定義在R上的偶函數(shù)f(x),當x≥0時,f(x)=x+1,那么x<0時,f(x)=
 
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先由函數(shù)是偶函數(shù)得f(-x)=f(x),然后將所求區(qū)間利用運算轉(zhuǎn)化到已知區(qū)間上,代入到x>0時,f(x)=x+1,可得x<0時,函數(shù)的解析式.
解答: 解:∵函數(shù)y=f(x)是偶函數(shù),
∴f(-x)=f(x)
設(shè)x<0,則-x>0,
f(x)=f(-x)=-x+1,
故答案是:-x+1.
點評:本題考查了函數(shù)奇偶性的性質(zhì),以及將未知轉(zhuǎn)化為已知的轉(zhuǎn)化化歸思想,是個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
logax       (x≥1)
(3-a)x-1     (x<1)
 是定義在R上x1≠x2,恒有
f(x1)-f(x2)
x1-x2
>0
的函數(shù),求a的取值范圍是( 。
A、[2,3)
B、(1,3)
C、(1,+∞)
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個多面體的三視圖分別為正方形、等腰三角形和矩形,如圖所示.則該多面體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A為不等式組
x≤0
y≥0
x-y+2≥0
表示的平面區(qū)域,則當a從1連續(xù)變化到2,動直線x+y=a掃過A中那部分區(qū)域的面積為(  )
A、2
B、1
C、
3
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的直觀圖如圖1,其按一定比例畫出的三視圖如圖2,三視圖中的長度a對應(yīng)直觀圖中2cm.

(1)結(jié)合兩個圖形,試指出該幾何體中相互垂直的面與相互垂直的線段,并指出相關(guān)線段的長度;
(2)求AB與CD所成角的大。
(3)求二面角A-BD-C的平面角的正切值;
(4)計算該幾何體的體積與表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一同學(xué)在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…
若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前200個圈中的●的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點為A,異于點A的兩動點B、C分別在l1、l2上,且BC=3,則過A、B、C三點的動圓所形成的圖形面積為(  )
A、6π
B、9π
C、
2
D、
9
4
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(-1,1)
,
m
=
a
b
,
n
=2
a
+
b

(1)若
m
n
,求實數(shù)λ的值;
(2)若
m
n
,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系中,已知平行四邊形ABCD的三個頂點坐標:A(0,0),B(3,
3
),C(4,0).
(1)求邊CD所在直線的方程(結(jié)果寫成一般式);
(2)證明平行四邊形ABCD為矩形,并求其面積.

查看答案和解析>>

同步練習(xí)冊答案