【題目】如圖O是等腰三角形ABC內(nèi)一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.

(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積

【答案】
(1)

見解答


(2)


【解析】
1.由于ABC是等腰三角形,ADBC,所以AD是CAB的平分線,又因為圓O與AB,AC分別相切于E,F,所以AE=AF,故ADEF,所以EF//BC。
2.由(I)知AE=AF,ADEF,故AD是EF的垂直平分線,又EF為圓O的弦,所以O(shè)在AD上
連接OE,OF,則OEAE,由AG等于圓O的半徑得AO=2OE,所以OAE=30
因此ABC和AEF都是等邊三角形
因為AE=2,所以AO=4,OE=2,因為OM=OE=2,DM=MN=,所以O(shè)D=1,于是AD=5,AB=,所以四邊形DBCF的面積為X(2X-X(22X=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F(xiàn)為AD的中點,PD⊥BF.
(1)求證:AD⊥PB;
(2)若菱形ABCD的邊長為6,PA=5,求四面體PBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx+a(1-x),問:(1)討論f(x) 的單調(diào)性;(2)當(dāng) f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.
(1)(I)討論f(x) 的單調(diào)性;
(2)(II)當(dāng) f(x)有最大值,且最大值大于2a-2 時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個用戶,根據(jù) 用戶對其產(chǎn)品的滿意度的評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的頻率分布表.A地區(qū)用戶滿意度評分的頻率分布直方圖
B地區(qū)用戶滿意度評分的頻率分布表

滿意度評分分組

[50,60)

[50,60)

[50,60)

[50,60)

[50,60)

頻數(shù)

2

8

14

10

6


(1)(I)在答題卡上作出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過此圖比較兩地區(qū)滿意度評分的平均值及分 散 程度.(不要求計算出具體值,給出結(jié)論即可)
B地區(qū)用戶滿意度評分的頻率分布直方圖

(2)(II)根據(jù)用戶滿意度評分,將用戶的滿意度評分分為三個等級:

滿意度評分

低于70分

70分到89分

不低于90分

滿意度等級

不滿意

滿意

非常滿意

估計那個地區(qū)的用戶的滿意度等級為不滿意的概率大,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,D是BC上的點,AD平分BAC,ABD面積是ADC面積的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015新課標(biāo)II)在直角坐標(biāo)系xoy中,曲線C1(t為參數(shù),t≠0),其中0,在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:=2sin,C3:=2cos
(1)(Ⅰ)求C2與C1交點的直角坐標(biāo)
(2)(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱臺上、下底面分別是邊長為3和6的正方形,,且
底面,點,分別在棱,上.
(1)若是的中點,證明:;
(2若//平面,二面角的余弦值為,求四面體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·江蘇)某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為了l1, l2 , 山區(qū)邊界曲線為C , 計劃修建的公路為l , 如圖所示,MNC的兩個端點,測得點M到l1, l2 的距離分別為5千米和40千米,點N到l1, l2的距離分別為20千米和2.5千米,以l1, l2所在的直線分別為x , y軸,建立平面直角坐標(biāo)系xOy , 假設(shè)曲線C符合函數(shù)y=(其中a , b為常數(shù))模型.

(1)求a , b的值;
(2)設(shè)公路l與曲線C相切于P點,P的橫坐標(biāo)為t.
①請寫出公路l長度的函數(shù)解析式f(t),并寫出其定義域;
②當(dāng)t為何值時,公路l的長度最短?求出最短長度.

查看答案和解析>>

同步練習(xí)冊答案