若90°<-α<180°,則180°-α與α的終邊                                                (  )

A.關(guān)于x軸對稱  B.關(guān)于y軸對稱  C.關(guān)于原點對稱  D.以上都不對
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校課題小組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機抽取高二年級20名學(xué)生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數(shù)學(xué)成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
數(shù)學(xué)成績優(yōu)秀 數(shù)學(xué)成績不優(yōu)秀 合計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合計 20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
(3)若從這20個人中抽出1人來了解有關(guān)情況,求抽到的學(xué)生數(shù)學(xué)成績與物理成績至少有一門不優(yōu)秀的概率.
參考數(shù)據(jù):
①假設(shè)有兩個分類變量X和Y,它們的值域分別為{x1,x2}和{y1,y2},其樣本頻數(shù)列聯(lián)表(稱為2×2列聯(lián)表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知等差數(shù)列{an}的前n項和為Sn,若a4=18-a5,則S8=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機抽取高二年級20名學(xué)生某次考試成績(百分制)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10
數(shù)學(xué)成績 95 75 80 94 92 65 67 84 98 71
物理成績 90 63 72 87 91 71 58 82 93 81
序號 11 12 13 14 15 16 17 18 19 20
數(shù)學(xué)成績 67 93 64 78 77 90 57 83 72 83
物理成績 77 82 48 85 69 91 61 84 78 86
若數(shù)學(xué)成績90分以上為優(yōu)秀,物理成績85分(含85分)以上為優(yōu)秀.
(Ⅰ)根據(jù)上表完成下面的2×2列聯(lián)表:
數(shù)學(xué)成績優(yōu)秀 數(shù)學(xué)成績不優(yōu)秀 合計
物理成績優(yōu)秀
物理成績不優(yōu)秀 12
合計 20
(Ⅱ)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多少的把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來了解有關(guān)情況:將一個標(biāo)有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號,試求:抽到12號的概率的概率.
參考數(shù)據(jù)公式:①獨立性檢驗臨界值表
P(K2≥x0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
x0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
②獨立性檢驗隨機變量K2值的計算公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了讓學(xué)生了解更多“奧運會”知識,某中學(xué)舉行了一次“奧運知識競賽”,共有800名學(xué)生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表,解答下列問題:
(1)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學(xué)生隨機地編號為000,001,002,…,799,試寫出第五組第一位學(xué)生的編號;
(2)填充頻率分布表的空格(直接填在表格內(nèi)),并作出頻率分布直方圖;
(3)若成績在85.5~95.5分的學(xué)生為二等獎,問參賽學(xué)生中獲得二等獎的學(xué)生約為多少人?
分組 頻數(shù) 頻率
60.5~70.5 0.16
70.5~80.5 10
80.5~90.5 18 0.36
90.5~100.5
合計 50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)已知等差數(shù)列{an}的前n項和為Sn,若a4=18-a5,則S8=( 。

查看答案和解析>>

同步練習(xí)冊答案