已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=
1anan+1
,求數(shù)列{bn}的前n項和Sn
分析:(1)首先根據(jù)a1和d,求出a2、a5、a14再根據(jù)a2、a5、a14是等比數(shù)列,求出數(shù)列{an}的通項公式;
(2)根據(jù)(1)求出數(shù)列{bn}的通項公式,然后根據(jù)數(shù)列通項公式的特點選用裂項求和法進(jìn)行求和即可.
解答:解:(1)∵a2=1+d,a5=1+4d,a14=1+13d,且a2、a5、a14成等比數(shù)列,
∴(1+4d)2=(1+d)(1+13d)即d=2或0(舍去)
∴an=1+(n-1)•2=2n-1;
(2)由(1)可得bn=
1
(2n-1)•(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
Sn=b1+b2+…+bn=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1
點評:本題考查了等比數(shù)列的性質(zhì),以及等差數(shù)列的通項公式的求法,對于復(fù)雜數(shù)列的前n項和求法我們一般先求出數(shù)列的通項公式,再依據(jù)數(shù)列的特點采取具體的方法.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案