在△ABC中,如果AB=5,AC=3,BC=4,那么角
AB
AC
等于( 。
A、9B、12C、15D、20
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,解三角形,平面向量及應(yīng)用
分析:判斷三角形ABC為直角三角形,計(jì)算cosA,再由向量的數(shù)量積的定義,計(jì)算即可得到.
解答: 解:AB=5,AC=3,BC=4,
則三角形ABC為直角三角形,且AB為斜邊,
即有cosA=
3
5
,
AB
AC
=|
AB
|•|
AC
|•cosA=5×
3
5
=9.
故選A.
點(diǎn)評:本題考查平面向量的數(shù)量積的定義,考查解直角三角形,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2-2x-3>0},N={x|-1≤x≤1},則M∩(∁RN)=( 。
A、(-∞,-3)∪(1,3)
B、(-∞,-1)∪(1,+∞)
C、(-∞,-1)∪(3,+∞)
D、(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在底面為正三角形的三棱柱ABC-A1B1C1中,若AA1⊥平面ABC,AB=
2
BB,則AB1與C1B所成角的大小為( 。
A、60°B、45°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足f(π-x)=f(x),且當(dāng)x∈(-
π
2
,
π
2
)時(shí),f(x)=xsinx-cosx,則( 。
A、f(2)<f(3)<f(4)
B、f(3)<f(4)<f(2)
C、f(4)<f(3)<f(2)
D、f(4)<f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)O(0,0),B(2
2
,
π
4
).
(1)求以O(shè)B為直徑的圓C的直角坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=4,判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,a1=1,a4=8,在an和an+1之間插入bn個(gè)數(shù)得到一個(gè)新數(shù)列{cn},已知b1=1,{cn}為等差數(shù)列
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下面材料:
由曲線y=sinx,x∈[0,π],直線x=0,x=π及x軸圍成的封閉圖形的面積為2;
由曲線y=sin2x,x∈[0,
π
2
],直線x=0,x=
π
2
及x軸圍成的封閉圖形的面積為1;
由曲線y=sin3x,x∈[0,
π
3
],直線x=0,x=
π
3
及x軸圍成的封閉圖形的面積為
2
3
;…
據(jù)此猜想:由曲線y=Asin(ωx+φ),(A>0,ω>0),x∈[0,
π
ω
]
,直線x=0,x=
π
ω
及x軸圍成的封
閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的兩焦點(diǎn)與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓C交于A,B兩點(diǎn)的直線l:y=kx+m(k∈R),使得|
OA
+2
OB
|=|
OA
-2
OB
|
成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的半徑為3,圓心C在直線2x+y=0上且在x軸的下方,x軸被圓C截得的弦長BD為2
5

(1)求圓C的方程;
(2)若圓E與圓C關(guān)于直線2x-4y+5=0對稱,P(x,y)為圓E上的動點(diǎn),求
(x-1)2+(y+2)2
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案