已知橢圓的右頂點(diǎn)為A,離心率e=
1
2
,過左焦點(diǎn)F(-1,0)作直線l與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線x=-4交于點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段MN為直徑的圓經(jīng)過焦點(diǎn)F.
(Ⅰ)由已知 c=1,
c
a
=
1
2
,
∴a=2,b=
3

∴橢圓方程為
x2
4
+
y2
3
=1.--------------(5分)
證明:(Ⅱ) 設(shè)直線l方程為 y=k(x+1),
由  
y=k(x+1)
x2
4
+
y2
3
=1
得(3+4k2)x2+8k2x+4k2-12=0.
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=-
8k2
3+4k2
,x1x2=
4k2-12
3+4k2
.-----(7分)
設(shè)M(-4,yM),N(-4,yN),則由A,P,M共線,得
yM-y1
-4-x1
=
y1
x1-2
,有 yM=-
6y1
x1-2
.同理 yN=-
6y2
x2-2

∴yMyN=
36y1y2
(x1-2)(x2-2)
=
36k2[x1x2+(x1+x2)+1]
x1x2-2(x1+x2)+4
.------(9分)
FM
FN
=(-3,yM)•(-3,yN)=9+yMyN
=9+
36k2[x1x2+(x1+x2)+1]
x1x2-2(x1+x2)+4
=9+
36k2[
4k2-12
3+4k2
-
8k2
3+4k2
+1]
4k2-12
3+4k2
+2
8k2
3+4k2
+4
=9-
9×36k2
36k2
=0.

FM
FN
,即FM⊥FN,以線段MN為直徑的圓經(jīng)過點(diǎn)F;----(12分)

當(dāng)直線l的斜率不存在時(shí),不妨設(shè)M(-4,3),N(-4,-3).則有
FM
FN
=(-3,3)•(-3,-3
)=9-9=0,
FM
FN
,即FM⊥FN,以線段MN為直徑的圓經(jīng)過點(diǎn)F.
綜上所述,以線段MN為直徑的圓經(jīng)過定點(diǎn)F.-----------(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)模擬)已知橢圓的右頂點(diǎn)為A,離心率e=
12
,過左焦點(diǎn)F(-1,0)作直線l與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線x=-4交于點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段MN為直徑的圓經(jīng)過焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇州市高三調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓右頂點(diǎn)A2,0,點(diǎn)P2e)在橢上(e為橢圓的離心率).

1)求橢圓的方程;

2若點(diǎn)B,CC在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇州市高三調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓右頂點(diǎn)A2,0點(diǎn)P2e,)在橢上(e為橢圓的離心率).

1)求橢圓的方程

2若點(diǎn)B,CC在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省菏澤市鄄城一中高三模擬沖刺數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓的右頂點(diǎn)為A,離心率,過左焦點(diǎn)F(-1,0)作直線l與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線x=-4交于點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段MN為直徑的圓經(jīng)過焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓的右頂點(diǎn)為A,離心率,過左焦點(diǎn)F(-1,0)作直線l與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線x=-4交于點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段MN為直徑的圓經(jīng)過焦點(diǎn)F.

查看答案和解析>>

同步練習(xí)冊答案