設(shè)a=log0.73,b=2.3-0.3,c=0.7-3.2,則a,b,c的大小關(guān)系是( 。
A、b>a>c
B、c>b>a
C、c>a>b
D、a>b>c
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=log0.73<0,0<b=2.3-0.3<1,c=0.7-3.2>1.
∴c>b>a.
故選:B.
點評:本題考查了對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
).
(1)求函數(shù)f(x)的最小正周期;
(2)已知關(guān)于x的方程f(x)=2t在(
π
6
,
3
)
上有且只有一個根,求t的取值范圍;
(3)當(dāng)x∈(
π
6
,
3
)
時,若不等式2[f(x)]2+af(x)+a>2(9)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),f(x)在x∈[0,+∞)上為增函數(shù),且f(-3)=0,則不等式f(2x-1)<0的解集為( 。
A、(-1,2)
B、(-∞,-1)∪(2,+∞)
C、(-∞,2)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集R,A={x|x>0},B={x|x>1},則A∩∁RB=( 。
A、{x|0≤x<1}
B、{x|0<x≤1}
C、{x|x<0}
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為5萬,已知生產(chǎn)100件這樣的產(chǎn)品需要再增加可變成本(另增加投入)2.5萬元,根據(jù)市場調(diào)研分析,銷售的收入為g(x)=50x-5x2(萬元),(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百件).假設(shè)此種產(chǎn)品的需要求量最多為500件,設(shè)該工廠年利潤為y萬元.
(1)將年利潤表示為年產(chǎn)量的函數(shù);
(2)求年利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(2,
2
2
)
在冪函數(shù)f(x)的圖象上,則f(x)的表達(dá)式為( 。
A、f(x)=x 
1
2
B、f(x)=x -
1
2
C、f(x)=x2
D、f(x)=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列兩集合表示同一集合的是( 。
A、M={1,2},N={(1,2)}
B、M={y=lgx2},N={y=2lgx}
C、M={x|x+y=1},N={y|x+y=1}
D、M={y|y=x2},N={y|y=2x}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,邊a、b、c對應(yīng)角A、B、C,且a、b、c成等比數(shù)列,B=
π
3
,則
1
tanA
+
1
tanC
=
 

查看答案和解析>>

同步練習(xí)冊答案