已知圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對(duì)稱.
(I)求m的值;
(Ⅱ)直線l與圓C交于A,B兩點(diǎn),數(shù)學(xué)公式數(shù)學(xué)公式=-3(O為坐標(biāo)原點(diǎn)),求圓C的方程.

解:(I)x2+y2+2x+a=0?(x+1)2+y2=1-a,圓心(-1,0).
∵圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對(duì)稱,∴直線過圓心,
∴-m+0+1=0?m=1,
故m的值為1.
(II)設(shè)A(x1,y1),B(x2,y2
=x1x2+y1y2=2x1x2+x1+x2+1
?2x2+4x+1+a=0,
根據(jù)韋達(dá)定理:x1+x2=-2;x1x2=
∴1+a-2+1=-3?a=-3.
∴圓C的方程是:(x+1)2+y2=4.
分析:(I)根據(jù)圓的對(duì)稱性判定直線過圓心,先求圓心坐標(biāo),再代入直線方程求解;
(II)設(shè)A、B的坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算與韋達(dá)定理根與系數(shù)的關(guān)系求解即可.
點(diǎn)評(píng):本題主要考查直線與圓相交的性質(zhì)及向量坐標(biāo)運(yùn)算.巧妙的利用韋達(dá)定理根與系數(shù)的關(guān)系設(shè)而不求是求解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案