已知數(shù)列{an}的遞推公式an=
n,n為奇數(shù)
a
n
2
,n為偶數(shù)(n∈N*)
,則a2012+a2013=( 。
A、2516B、2518
C、3019D、3021
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:利用數(shù)列的遞推公式直接求解.
解答: 解:∵數(shù)列{an}的遞推公式an=
n,n為奇數(shù)
a
n
2
,n為偶數(shù)(n∈N*)
,
∴a2012+a2013=a1006+2013=a503+2013=2516.
故選:A.
點(diǎn)評(píng):本題考查數(shù)列中兩項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意遞推公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C為其內(nèi)角,若
1
tanA
,
1
tanB
,
1
tanC
依次成等差數(shù)列,則角B的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的骰子連續(xù)拋擲三次,依次得到的三個(gè)點(diǎn)數(shù)成等差數(shù)列的概率為(  )
A、
1
12
B、
1
6
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線kx+y+2=0和以M(-2,1),N(3,2)為端點(diǎn)的線段相交,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(cosα,sinα),
OB
=(-sin(α+
π
6
),cos(α+
π
6
)),其中O為滿足|λ
OA
-
OB
|
3
|
OB
|
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-lnx,g(x)=lnx+
a
x
,(a>0).
(1)求函數(shù)g(x)的極值;
(2)已知x1>0,函數(shù)h(x)=
f(x)-f(x1)
x-x1
,x∈(x1,+∞),判斷并證明h(x)的單調(diào)性;
(3)設(shè)0<x1<x2,試比較f(
x1+x2
2
)
1
2
[f(x1)+f(x2)]
,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷三角函數(shù)的奇偶性.
(1)f(x)=sin(
3x
4
+
2
);
(2)f(x)=lg
sinx+cosx
sinx-cosx
;
(3)f(x)=
1+sinx-cosx
1+sinx+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
-1,0<x<1
1-
1
x
,x≥1

(1)判斷函數(shù)f(x)在區(qū)間(0,1)和[1,+∞)上的單調(diào)性(不必證明);
(2)當(dāng)0<a<b,且f(a)=f(b)時(shí),求
1
a
+
1
b
的值;
(3)若存在實(shí)數(shù)a,b(1<a<b)使得x∈[a,b]時(shí),f(x)的取值范圍是[ma,mb](m≠0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=2py(p>0)過焦點(diǎn)F的直線l交拋物線于A、B兩點(diǎn),O為原點(diǎn),若△AOB面積最小值為8.
(1)求P值
(2)過A點(diǎn)作拋物線的切線交y軸于N,
FM
=
FA
+
FN
,則點(diǎn)M在一定直線上,試證明之.

查看答案和解析>>

同步練習(xí)冊(cè)答案