解答:解:(1)f
′(x)=[x
2+(2+a)x+2a]e
x=(x+2)(x+a)e
x.
①當(dāng)a=2時(shí),f
′(x)≥0,∴f(x)在R上單調(diào)遞增;
②當(dāng)a≠2時(shí),令f
′(x)=0,解得x=-2或-a.
不妨令x
1<x
2,(x
1是-2與-a兩個(gè)數(shù)中較小的一個(gè),x
2是另一個(gè)).列表如下:
當(dāng)a<2時(shí),-a>-2,取x
1=-2,x
2=-a,其單調(diào)區(qū)間如表格,其極大值為f(-2)=(4-a)e
-2,
極小值為f(-a)=ae
-a.
當(dāng)a>2時(shí),-a<-2,取x
1=-a,x
2=-2,其單調(diào)區(qū)間如表格,其極小值為f(-2)=(4-a)e
-2,
極大值為f(-a)=ae
-a.
(2)當(dāng)a>2時(shí),利用(1)的結(jié)論畫(huà)出圖象:
f(-3)=(9-2a)e
-3,又f(-3)-f(-2)=
e-3(e-2)(a-),由于a>2,且
>2,
∴①當(dāng)2<a≤
時(shí),f(-3)≤f(-2),∴f(-2)<t<f(-a)時(shí),函數(shù)y=f(x)(x∈[-3,+∞))的圖象與y=t的圖象有三個(gè)交點(diǎn),即函數(shù)y=g(x)有三個(gè)零點(diǎn);
②當(dāng)
<a<3時(shí),f(-3)>f(-2),∴f(-3)≤t<f(-a)時(shí),函數(shù)y=f(x)(x∈[-3,+∞))的圖象與y=t的圖象有三個(gè)交點(diǎn),即函數(shù)y=g(x)有三個(gè)零點(diǎn);
③當(dāng)a≥3時(shí),函數(shù)y=f(x)(x∈[-3,+∞))的圖象與y=t的圖象至多有三個(gè)交點(diǎn),即函數(shù)y=g(x)至多有兩個(gè)零點(diǎn).
綜上可知:①當(dāng)2<a≤
時(shí),t∈((4-a)e
-2,ae
-a)時(shí),函數(shù)g(x)有三個(gè)零點(diǎn);
②當(dāng)
<a<3時(shí),t∈((9-2a)e
-3,ae
-a)時(shí),函數(shù)g(x)有三個(gè)零點(diǎn);
③當(dāng)a≥3時(shí),則不存在滿足題意的實(shí)數(shù)t.