4.設(shè)集合A={x|-1<x<1},B={x|log2x<-1},則A∩B=( 。
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(0,1)D.$({-1,\frac{1}{2}})$

分析 運(yùn)用對數(shù)函數(shù)單調(diào)性,求得集合B,再由交集定義,即可得到所求.

解答 解:集合A={x|-1<x<1},
B={x|log2x<-1}={x|0<x<$\frac{1}{2}$},
則A∩B={x|0<x<$\frac{1}{2}$},
故選:A.

點(diǎn)評 本題考查集合的運(yùn)算,主要是交集運(yùn)算,同時考查對數(shù)函數(shù)單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-x2+4|x|+5.
(1)畫出函數(shù)y=f(x)在閉區(qū)間[-5,5]上的大致圖象;
(2)若直線y=a與y=f(x)的圖象有2個不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對于數(shù)列{xn},若對任意n∈N+,都有$\frac{{x}_{n}+{x}_{n+2}}{2}<{x}_{n+1}$成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)b${\;}_{n}=2t-\frac{t{n}^{2}-n}{{2}^{n-1}}$,若數(shù)列b${\;}_{5},_{6},_{7},…,_{n}(n≥5,n∈{N}^{+})$是“減差數(shù)列”,則實(shí)數(shù)t的取值范圍是($\frac{3}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=3$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,則$\overrightarrow{AC}$•$\overrightarrow{AD}$的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)y=f(x)是R上的增函數(shù),且f(m+3)≤f(5),則實(shí)數(shù)m的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax3+x,g(x)=x2+px+q.
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,函數(shù)F(x)=f'(x)g(x)(其中f'(x)為函數(shù)f(x)的導(dǎo)數(shù))的圖象關(guān)于直線x=-1對稱,求函數(shù)F(x)單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,若對任意的x≥1,都有g(shù)(x)≥(6+λ)x-λlnx+3恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{m}$與向量$\overrightarrow{n}$平行,其中$\overrightarrow{m}$=(2,8),$\overrightarrow{n}$=(-4,t),則t=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知在△ABC中,a,b,c分別是∠BAC,∠ABC,∠ACB的對邊,若過點(diǎn)C作垂直于AB的垂線CD,且CD=h,則下列給出的關(guān)于a,b,c,h的不等式中正確的是( 。
A.a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$B.a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$C.a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$D.a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,BC⊥PB,PC與平面ABCD所成角的正切值為$\frac{{\sqrt{2}}}{2}$,△BCD為等邊三角形,PA=2$\sqrt{2}$,AB=AD,E為PC的中點(diǎn).
(1)求AB;
(2)求點(diǎn)E到平面PBD的距離.

查看答案和解析>>

同步練習(xí)冊答案