8.求值:(1)(-1.8)0+($\frac{2}{3}$)-2•(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$-$\frac{1}{\sqrt{0.01}}$+$\sqrt{{9}^{3}}$
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

分析 (1)利用指數(shù)冪的運(yùn)算性質(zhì)即可得出.
(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:(1)原式=$1+{(\frac{2}{3})^2}•{(\frac{27}{8})^{\frac{2}{3}}}-10+{9^{\frac{3}{2}}}$=$1+{(\frac{2}{3})^2}•{(\frac{3}{2})^2}-10+27=29-10=19$.
(2)原式=$lg5+lg100+lg8-lg5-\frac{1}{2}lg{8^2}+50=lg100+50=52$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算法則、指數(shù)冪的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若CD∥面EFGH,求證:EH∥FG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)區(qū)間[q,p]的長度為p-q,其中p>q.現(xiàn)已知兩個(gè)區(qū)間[4lnm,ln2m]與[lnm,4lnm-10]的長度相等,則ex+1+me-x的最小值為(  )
A.2e3B.$2{e^{\frac{3}{2}}}$或2e3C.$2{e^{\frac{3}{2}}}$D.$2{e^{\frac{3}{2}}}$或2e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3
(1)求f(x)的解析式;
(2)若當(dāng)x∈[-3,-1]時(shí),y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a>b>1,$θ∈(0,\frac{π}{2})$,則(  )
A.asinθ<bsinθB.absinθ<basinθ
C.alogbsinθ<blogasinθD.logasinθ<logbsinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義在R上的函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,當(dāng)x>0時(shí),有f(x)=2x-log3(x2-3x+5),則f(-2)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上為增函數(shù),且f(-1)=$\frac{1}{2}$,若實(shí)數(shù)a滿足f(loga3)+f(${log_a}\frac{1}{3}$)≤1,則實(shí)數(shù)a的取值范圍為a≥3,或0<a≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.長方體的長寬高分別是$\sqrt{3}$,2,$\sqrt{5}$,則其外接球的體積是4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某蛋糕店每天做若干個(gè)生日蛋糕,每個(gè)制作成本為50元,當(dāng)天以每個(gè)100元售出,若當(dāng)天白天售不出,則當(dāng)晚已30元/個(gè)價(jià)格作普通蛋糕低價(jià)售出,可以全部售完.
(1)若蛋糕店每天做20個(gè)生日蛋糕,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天生日蛋糕的需求量n(單位個(gè),n∈N*)的函數(shù)關(guān)系;
(2)蛋糕店記錄了100天生日蛋糕的日需求量(單位:個(gè))整理得下表:
日需求量n17181920212223
頻數(shù)(天)10202014131310
(ⅰ)假設(shè)蛋糕店在這100天內(nèi)每天制作20個(gè)生日蛋糕,求這100天的日利潤(單位:元)的平均數(shù);
(ⅱ)若蛋糕店一天制作20個(gè)生日蛋糕,以100天記錄的各需求量的頻率作為概率,求當(dāng)天利潤不少于900元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案