1.如果函數(shù)f(x)在其定義域內存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“可分拆函數(shù)”.
(1)試判斷函數(shù)$f(x)=\frac{1}{x}$是否為“可分拆函數(shù)”?并說明你的理由;
(2)證明:函數(shù)f(x)=2x+x2為“可分拆函數(shù)”;
(3)設函數(shù)$f(x)=lg\frac{a}{{{2^x}+1}}$為“可分拆函數(shù)”,求實數(shù)a的取值范圍.

分析 (1)假設f(x)是“可分拆函數(shù)”,則存在x0,使得$\frac{1}{{{x_0}+1}}=\frac{1}{x_0}+\frac{1}{1}$,即$x_0^2+{x_0}+1=0$,判斷此函數(shù)是否有解即可得出.
(2)令h(x)=f(x+1)-f(x)-f(1),則h(x)=2x+1+(x+1)2-2x-x2-2-1=2(2x-1+x-1),又h(0)=-1,h(1)=2,故h(0)•h(1)<0,所以h(x)=0在上有實數(shù)解x0,也即存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,即可證明.
(3)因為函數(shù)$f(x)=lg\frac{a}{{{2^x}+1}}$為“可分拆函數(shù)”,所以存在實數(shù)x0,使得$lg\frac{a}{{{2^{{x_0}+1}}+1}}$=$lg\frac{a}{{{2^{x_0}}+1}}$+$lg\frac{a}{3}$,$\frac{a}{{{2^{{x_0}+1}}+1}}$=$\frac{a}{{{2^{x_0}}+1}}$×$\frac{a}{3}$且a>0,所以,$a=\frac{{3({2^{x_0}}+1)}}{{{2^{{x_0}+1}}+1}}$=$\frac{{3({2^{x_0}}+1)}}{{2×{2^{x_0}}+1}}$,換元利用單調性即可得出.

解答 解:(1)假設f(x)是“可分拆函數(shù)”,則存在x0,使得$\frac{1}{{{x_0}+1}}=\frac{1}{x_0}+\frac{1}{1}$,…(1分)
即$x_0^2+{x_0}+1=0$,而此方程的判別式△=1-4=-3<0,方程無實數(shù)解,
所以,f(x)不是“可分拆函數(shù)”.                  …(3分)
(2)證明:令h(x)=f(x+1)-f(x)-f(1),
則h(x)=2x+1+(x+1)2-2x-x2-2-1=2(2x-1+x-1),
又h(0)=-1,h(1)=2,故h(0)•h(1)<0,
所以h(x)=f(x+1)-f(x)-f(1)=0在上有實數(shù)解x0
也即存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,
所以,f(x)=2x+x2是“可分拆函數(shù)”.         …(7分)
(3)因為函數(shù)$f(x)=lg\frac{a}{{{2^x}+1}}$為“可分拆函數(shù)”,
所以存在實數(shù)x0,使得$lg\frac{a}{{{2^{{x_0}+1}}+1}}$=$lg\frac{a}{{{2^{x_0}}+1}}$+$lg\frac{a}{3}$,$\frac{a}{{{2^{{x_0}+1}}+1}}$=$\frac{a}{{{2^{x_0}}+1}}$×$\frac{a}{3}$且a>0,
所以,$a=\frac{{3({2^{x_0}}+1)}}{{{2^{{x_0}+1}}+1}}$=$\frac{{3({2^{x_0}}+1)}}{{2×{2^{x_0}}+1}}$,
令$t={2^{x_0}}$,則t>0,所以,a=$\frac{3(t+1)}{2t+1}=\frac{3}{2}+\frac{3}{2(2t+1)}$,
由t>0得$\frac{3}{2}<a<3$,即a的取值范圍是$({\frac{3}{2},3})$.     …(12分)

點評 本題考查了抽象函數(shù)的單調性、不等式與方程的解法、新定義、函數(shù)零點判定定理,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.若A={x|-3≤x≤4},B={x|-1≤x≤m+1},B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知拋物線C 的頂點在原點,F(xiàn)($\frac{1}{2}$,0)為拋物線的焦點.
(1)求拋物線C 的方程;
(2)過點F 的直線l與動拋物線C 交于 A、B 兩點,與圓M:${(x-\frac{3}{2})^2}+{(y-8)^2}=49$交于D、E兩點,且D、E位于線段 AB上,若|AD|=|BE|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設a=log23,b=log3$\frac{1}{2}$,$c={(\frac{1}{2})^3}$,則a、b、c的大小關系是( 。
A.a<b<cB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.抽氣機每次抽出容器內空氣的50%,則至少要抽10次才能使容器內剩下的空氣少于原來的0.1%.(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某人開車去上班,開始勻速前行,后來為了趕時間加速前行,則下列圖象與描述的事件最吻合的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知集合A={0,2,3},B={2,a2+1},且B⊆A,則實數(shù)a=$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+si{n}^{2}α}\end{array}\right.$(α為參數(shù)),以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為θ=$\frac{π}{4}$,試求直線l與曲線C的交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}是公比為q(q≠1)的等比數(shù)列,且a1,a3,a2成等差數(shù)列,則公比q的值為-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案