6.已知某幾何體的三視圖如圖,則該幾何體的體積是( 。
A.$\frac{{4\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 根據(jù)三視圖知該幾何體是直三棱柱,
結(jié)合圖中數(shù)據(jù),計(jì)算它的體積即可.

解答 解:根據(jù)三視圖知,該幾何體是底面為等腰三角形,高為2的直三棱柱,
結(jié)合圖中數(shù)據(jù),計(jì)算它的體積是
V三棱柱=$\frac{1}{2}$×2$\sqrt{3}$×1×2=2$\sqrt{3}$.
故選:C.

點(diǎn)評 本題考查了由幾何體三視圖求體積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.張三同學(xué)從7歲起到13歲每年生日時(shí)對自己的身高測量后記錄如表:
年齡 (歲)78910111213
身高 (cm)121128135141148154160
(Ⅰ)求身高y關(guān)于年齡x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預(yù)測張三同學(xué)15歲時(shí)的身高.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{1}-\overline{x})({y}_{1}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\overline{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-mx+m(m∈R).
(1)當(dāng)m>0時(shí),求f′(x)+mx的最小值;
(2)若f(x)>0在x∈(0,+∞)上有解,求實(shí)數(shù)m的取值集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知(如圖)為某四棱錐的三視圖,則該幾何體體積為$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,已知正三角形ABC的三個(gè)頂點(diǎn)都在球O的球面上,球心O到平面ABC的距離為1,且AB=3,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$是三個(gè)不共面向量,已知向量$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{i}$-$\overrightarrow{j}$+$\overrightarrow{k}$,$\overrightarrow$=5$\overrightarrow{i}$-2$\overrightarrow{j}$-$\overrightarrow{k}$,則4$\overrightarrow{a}$-3$\overrightarrow$=-13$\overrightarrow{i}$+2$\overrightarrow{j}$+7$\overrightarrow{k}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定義在(0,+∞)上的函數(shù)f(x)滿足下列條件:①f(x)不恒為0;②對任意的正實(shí)數(shù)x和任意的實(shí)數(shù)y都有f(xy)=y•f(x).
(1)求證:方程f(x)=0有且僅有一個(gè)實(shí)數(shù)根;
(2)設(shè)a為大于1的常數(shù),且f(a)>0,試判斷f(x)的單調(diào)性,并予以證明;
(3)若a>b>c>1,且2b=a+c,求證:f(a)•f(c)<[f(b)]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,Sn是數(shù)列{an}的前n項(xiàng)和,若S2017+m=1010,且a1•m>0,則$\frac{1}{a_1}+\frac{1}{m}$的最小值為( 。
A.2B.$\sqrt{2}$C.$2\sqrt{2}$D.$2+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\frac{{\sqrt{2}}}{2}({sin\frac{α}{2}-cos\frac{α}{2}})=\frac{{\sqrt{6}}}{3}$,則sinα的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案