15.已知數(shù)列{an}滿足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,Sn是數(shù)列{an}的前n項(xiàng)和,若S2017+m=1010,且a1•m>0,則$\frac{1}{a_1}+\frac{1}{m}$的最小值為( 。
A.2B.$\sqrt{2}$C.$2\sqrt{2}$D.$2+\sqrt{2}$

分析 由S2017-a1=(a2+a3)+(a4+a5)+…+(a2016+a2017),結(jié)合余弦函數(shù)值求和,再由S2017+m=1010,可得a1+m=2,由a1•m>0,可得a1>0,m>0,運(yùn)用乘1法和基本不等式即可得到所求最小值.

解答 解:數(shù)列{an}滿足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,
可得a2+a3=3cosπ=-3,a4+a5=5cos2π=5,a6+a7=7cos3π=-7,
…,a2016+a2017=2017cos1008π=2017,
則S2017-a1=(a2+a3)+(a4+a5)+…+(a2016+a2017)=-3+5-7+9-…+2017=1008,
又S2017+m=1010,
所以a1+m=2,
由a1•m>0,可得a1>0,m>0,
則$\frac{1}{a_1}+\frac{1}{m}$=$\frac{1}{2}$(a1+m)($\frac{1}{a_1}+\frac{1}{m}$)=$\frac{1}{2}$(2+$\frac{m}{{a}_{1}}$+$\frac{{a}_{1}}{m}$)≥$\frac{1}{2}$(2+2$\sqrt{\frac{m}{{a}_{1}}•\frac{{a}_{1}}{m}}$)=2.
當(dāng)且僅當(dāng)a1=m=1時(shí),取得最小值2.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列與三角函數(shù)的結(jié)合,注意運(yùn)用整體思想和轉(zhuǎn)化思想,考查最值的求法,注意運(yùn)用乘1法和基本不等式,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,若該幾何體的頂點(diǎn)都在球O的球面上,則球O的表面積為(  )
A.25πB.50πC.75πD.100π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知某幾何體的三視圖如圖,則該幾何體的體積是(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+4cosθ}\\{y=2+4sinθ}\end{array}\right.$(θ為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ+$\frac{3π}{4}$)=7.
(1)求直線l的直角坐標(biāo)方程;
(2)A,B分別是圓C和直線l上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.質(zhì)地均勻的正四面體表面分別印有0,1,2,3四個(gè)數(shù)字,某同學(xué)隨機(jī)的拋擲次正四面體2次,若正四面體與地面重合的表面數(shù)字分別記為m,n,且兩次結(jié)果相互獨(dú)立,互不影響.記m2+n2≤4為事件A,則事件A發(fā)生的概率為( 。
A.$\frac{3}{8}$B.$\frac{3}{16}$C.$\frac{π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點(diǎn)$({\sqrt{3},\frac{{\sqrt{3}}}{2}})$,左右焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(I)求橢圓C方程;
(II)圓D:${({x+\frac{{4\sqrt{3}}}{7}})^2}+{({y-\frac{{3\sqrt{3}}}{7}})^2}={r^2}({r>0})$與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓D的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知定義在R上函數(shù)f(x)=$\left\{\begin{array}{l}{x^2},x∈[{0,1})\\-{x^2},x∈[{-1,0})\end{array}$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$,則方程f(x)=g(x)在區(qū)間[-3,7]上的所有實(shí)根之和為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{32}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}\right.$,則z=2x-y的最大值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案