【題目】如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線上,且A,B,MN四點(diǎn)共面.

1)求證:;

2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.

2)根據(jù)二面角平面角大小為,可知N的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.

1)不妨設(shè),則,

中,

,

因?yàn)?/span>,

所以,因?yàn)?/span>//

A、B、M、N四點(diǎn)共面,所以//平面.

又平面平面,所以//.

,.

2)因?yàn)槠矫?/span>平面,且

所以平面,,

因?yàn)?/span>,所以平面,

因?yàn)?/span>,平面與平面夾角為

所以,在中,易知N的中點(diǎn),

如圖,建立空間直角坐標(biāo)系,

,,

,,

,,,

設(shè)平面的一個(gè)法向量為

則由,

,得.

設(shè)與平面所成角為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面,.求:

1所成角;

2與平面所成角;

3)二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,平面, 上一點(diǎn),為菱形對(duì)角線的交點(diǎn).

)證明:平面平面;

)若,四棱錐的體積是四棱錐的體積的,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐PABCD的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為2,過點(diǎn)A作一個(gè)與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx,記fx)的導(dǎo)函數(shù)為f'x).

1)若hx)=axf'x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

2)若x0,2π),試判斷函數(shù)fx)的極值點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年2月份,我國武漢地區(qū)爆發(fā)了新冠肺炎疫情,為了預(yù)防疫情蔓延,全國各大醫(yī)藥廠商紛紛加緊生產(chǎn)口罩,某醫(yī)療器械生產(chǎn)工廠為了解目前的生產(chǎn)力,統(tǒng)計(jì)了每個(gè)工人每小時(shí)生產(chǎn)的口罩?jǐn)?shù)量(單位:箱),得到如圖所示的頻率分布直方圖,其中每個(gè)工人每小時(shí)的產(chǎn)量均落在[10,70]內(nèi),數(shù)據(jù)分組為[10,20)、[2030)、[3040)、[40,50)、[50,60)、,已知前三組的頻率成等差數(shù)列,第三組、第四組、第五組的頻率成等比數(shù)列,最后一組的頻率為

1)求實(shí)數(shù)a的值;

2)在最后三組中采用分層抽樣的方法隨機(jī)抽取了6人,現(xiàn)從這6人中隨機(jī)抽出兩人對(duì)其它小組的工人進(jìn)行生產(chǎn)指導(dǎo),求這兩人來自同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m,若路面AB側(cè)邊CFDE,底部EF的造價(jià)分別為4a千元/m,5a千元/m,6a千元/ma為正常數(shù)),

1)試用θ表示箱梁的總造價(jià)y(千元);

2)試確定cosθ的值,使總造價(jià)最低?并求最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、BC是橢圓W上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).

(I)當(dāng)點(diǎn)BW的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.

(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】針對(duì)某新型病毒,某科研機(jī)構(gòu)已研發(fā)出甲乙兩種疫苗,為比較兩種疫苗的效果,選取100名志愿者,將他們隨機(jī)分成兩組,每組50人.第一組志愿者注射甲種疫苗,第二組志愿者注射乙種疫苗,經(jīng)過一段時(shí)間后,對(duì)這100名志愿者進(jìn)行該新型病毒抗體檢測(cè),發(fā)現(xiàn)有的志愿者未產(chǎn)生該新型病毒抗體,在未產(chǎn)生該新型病毒抗體的志愿者中,注射甲種疫苗的志愿者占.

產(chǎn)生抗體

未產(chǎn)生抗體

合計(jì)

合計(jì)

1)根據(jù)題中數(shù)據(jù),完成列聯(lián)表;

2)根據(jù)(1)中的列聯(lián)表,判斷能否有的把握認(rèn)為甲乙兩種疫苗的效果有差異.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案