精英家教網(wǎng)如圖,點(diǎn)L,M,N分別為△ABC三邊BC,CA,AB上的點(diǎn),且
BL
BC
=l
,
AM
CA
=m
,
AN
AB
=n
,若
AL
+
BM
+
CN
=0,求證:l=m=n.
分析:選定好基底,利用向量共線的充要條件將
BL
CM
用基底表示,再利用向量的運(yùn)算法則將
AL
、
BM
、
CN
用基底表示,
代入已知等式,求出系數(shù)的關(guān)系.
解答:證明:設(shè)
BC
=
a
CA
=
b
為基底,
由已知得
BL
=l
a
,
CM
=m
b

AB
=
AC
+
CB
=-
a
-
b
,∴
AN
=n
AB
=-n
a
-n
b
,
AL
=
AB
+
BL
=(l-1)
a
-
b

BM
=
BC
+
CM
=
a
+m
b

CN
=
CA
+
AN
=-n
a
+(1-n)
b

將①②③代入
AL
+
BM
+
CN
=0
,得,(l-n)
a
+(m-n)
b
=0

∴l(xiāng)=m=n.
點(diǎn)評:本題考查向量關(guān)共線的充要條件、利用平面向量基本定理將向量用基底線性表示.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在棱長為a的正方體ABCD-A1B1C1D1中,M、N分別是AA1、D1C1的中點(diǎn),過D、M、N三點(diǎn)的平面與正方體的下底面相交于直線l;
(1)畫出直線l;
(2)設(shè)l∩A1B1=P,求PB1的長;
(3)求D到l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,F(xiàn)是拋物線x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線內(nèi)一定點(diǎn),點(diǎn)Q為拋物線上一動點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線方程;
(2)已知過點(diǎn)P(0,-1)的直線l與拋物線x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與直線y=-1的交點(diǎn).求直線l的斜率的取值范圍并證明|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N (M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過橢圓W的右頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為a的正方體ABCD—A1B1C1D1中,M、N分別是AA1、D1C1的中點(diǎn),過D、M、N三點(diǎn)的平面與正方體的下底面相交于直線l;

 (1)畫出直線l;

(2)設(shè)l∩A1B1=P,求PB1的長;

(3)求D到l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北衡水中學(xué)高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)

如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。

(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;

(Ⅱ)當(dāng)點(diǎn)P變化時,求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。

 

查看答案和解析>>

同步練習(xí)冊答案