.(本小題滿分14分)
已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲
線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
3 |
2 |
4 |
||
0 |
4 |
(Ⅰ)求的標(biāo)準(zhǔn)方程;
(Ⅱ)請(qǐng)問(wèn)是否存在直線滿足條件:①過(guò)的焦點(diǎn);②與交不同兩點(diǎn)且滿
足?若存在,求出直線的方程;若不存在,說(shuō)明理由。
解:(Ⅰ)設(shè)拋物線,則有,據(jù)此驗(yàn)證個(gè)
點(diǎn)知(3,)、(4,4)在拋物線上,易求 ………………3分
設(shè):,把點(diǎn)(2,0)(,)代入得:
解得
∴方程為 ………………………………………………………………6分
(Ⅱ)法一:
假設(shè)存在這樣的直線過(guò)拋物線焦點(diǎn),設(shè)直線的方程為兩交點(diǎn)坐標(biāo)為
,
由消去,得…………………………9分
∴ ①
② ………………………10分
由,即,得
將①②代入(*)式,得, 解得 …………………13分
所以假設(shè)成立,即存在直線滿足條件,且的方程為:或…………………………………………………………………………………14分
法二:容易驗(yàn)證直線的斜率不存在時(shí),不滿足題意;……………………………7分
當(dāng)直線斜率存在時(shí),假設(shè)存在直線過(guò)拋物線焦點(diǎn),設(shè)其方程為,與
的交點(diǎn)坐標(biāo)為
由消掉,得 , …………9分
于是 , ①
即 ② ………………………………11分
由,即,得
將①、②代入(*)式,得 ,解得;……13分
所以存在直線滿足條件,且的方程為:或.………14分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com