已知直線y=x+m被橢圓4x2+y2=1截得的弦長為
2
2
5
,則m的值為
 
考點:直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:將直線的方程y=x+m與橢圓的方程4x2+y2=1聯(lián)立,借助于韋達定理,通過弦長公式,從而可求得m的值.
解答: 解:把直線y=x+m代入橢圓方程得:4x2+(x+m)2=1
即:5x2+2mx+m2-1=0,
設(shè)該直線與橢圓相交于兩點A(x1,y1),B(x2,y2),
則x1,x2是方程5x2+2mx+m2-1=0的兩根,由韋達定理可得:x1+x2=-
2m
5
,x1•x2=
m2-1
5

∴|AB|=
1+12
(x1+x2)2-4x1x2
=
2
4m2
25
-
4m2-4
5
=
2
2
5
;
∴m=±
5
2

故答案為:±
5
2
點評:本題考查直線與圓錐曲線的位置關(guān)系與弦長問題,難點在于弦長公式的靈活應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個半徑為2的球體經(jīng)過切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
3
B、
3
C、4π
D、8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(1+i)2•z=-1+i,其中i是虛數(shù)單位.則在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿足(2+i)•z=5,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1+i,z2=2+xi,(x∈R),若z1•z2∈R,則x的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1和圓C:x2+y2-6x+4y+11=0,動點P到這兩圓的切線長相等,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={3,5,6,8},B={1,3,5},那么A∪B等于(  )
A、{1,3,5,6,8}
B、{6,8}
C、{3,5}
D、{1,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,DC垂直平面ABC,∠BAC=90°,AC=
1
2
BC=kCD,點E在BD上,且BE=3ED.
(1)求證:AE⊥BC;
(2)若二面角B-AE-C的大小為120°,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x+8y+21=0,動圓P的半徑為5,且與圓C內(nèi)切,則點P的軌跡方程為
 

查看答案和解析>>

同步練習(xí)冊答案